Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Simulating eXtreme Spacetimes Collaboration's code \texttt{SpEC} can now routinely simulate binary black hole mergers undergoing $$\sim25$$ orbits, with the longest simulations undergoing nearly $$\sim180$$ orbits. While this sounds impressive, the mismatch between the highest resolutions for this long simulation is $$\mathcal{O}(10^{-1})$$. Meanwhile, the mismatch between resolutions for the more typical simulations tends to be $$\mathcal{O}(10^{-4})$$, despite the resolutions being similar to the long simulations'. In this note, we explain why mismatch alone gives an incomplete picture of code---and waveform---quality, especially in the context of providing waveform templates for LISA and 3G detectors, which require templates with $$\mathcal{O}(10^{3}) - \mathcal{O}(10^{5})$$ orbits. We argue that to ready the GW community for the sensitivity of future detectors, numerical relativity groups must be aware of this caveat, and also run future simulations with at least three resolutions to properly assess waveform accuracy.more » « less
-
Abstract Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006Class. Quantum Grav.236709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Ψ0boundary condition usually used bySpEC.more » « less