skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scherson, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper describes a GaNFET-based high-speed charge injection circuit to study fast redox processes at electrode-electrolyte interfaces. The circuit allows the rates of electrode processes, which are much faster than those accessible with a conventional potentiostat, to be measured. It is able to inject charge across the interface within a few nanoseconds, and also to hold the potential generated across the cell following injection for up to 1 s without appreciable (less than 1%) decay. In addition, the circuit can still monitor the current flowing through the cell, as in a conventional potentiostat. Preliminary test results with both a dummy load and a custom two-electrode electrochemical cell confirm the functionality of the proposed circuit. 
    more » « less