skip to main content

Search for: All records

Creators/Authors contains: "Schindler, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules thatmore »have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ @ 100more »TeV ν μ + ν ¯ μ = 1.44 − 0.26 + 0.25 × 10 − 18 GeV − 1 cm − 2 s − 1 sr − 1 and a spectral index γ SPL = 2.37 − 0.09 + 0.09 , constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.« less
    Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Abstract

    The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the$$^{222}$$222Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$222Rn activity concentration of$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$10μBq/kgin$$3.2\,\mathrm{t}$$3.2tof xenon. The knowledge of the distribution of the$$^{222}$$222Rn sources allowed us to selectivelymore »eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the$$^{222}$$222Rn activity concentration in XENON1T. The final$$^{222}$$222Rn activity concentration of$$(4.5\pm 0.1)\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$(4.5±0.1)μBq/kgin the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

    « less
  6. Abstract Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities L IR ≥ 10 12 L ⊙ , making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100 M ⊙ yr −1 , possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤ 0.13 usingmore »7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E −2.5 power-law spectrum, we report an upper limit on the stacked flux Φ ν μ + ν ¯ μ 90 % = 3.24 × 10 − 14 TeV − 1 cm − 2 s − 1 ( E / 10 TeV ) − 2.5 at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.« less
    Free, publicly-accessible full text available February 1, 2023
  7. Free, publicly-accessible full text available February 1, 2023
  8. Abstract Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolution which degrades with energy above $$\sim $$ ∼ 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $$^{136} \hbox {Xe}$$ 136 Xe at its Q value, $$Q_{\beta \beta }\simeq 2.46\,\hbox {MeV}$$ Q β β ≃ 2.46 MeV . For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at $$1\,\sigma /\mu $$ 1 σ / μ is as lowmore »as ( $$0.80 \pm 0.02$$ 0.80 ± 0.02 ) % in its one-ton fiducial mass, and for single-site interactions at $$Q_{\beta \beta }$$ Q β β . We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.« less
  9. Free, publicly-accessible full text available October 1, 2022