The Cascadia subduction megathrust off the Pacific Northwest follows an “end member” seismogenic behavior, producing large (up to moment magnitude 9) but infrequent (every several hundred years) earthquakes and tsunamis. Crustal deformation associated with the ongoing plate convergence has been characterized by land‐based geodetic observations, but the state of locking across the full breadth of the seismogenic fault is poorly constrained. We report results of offshore monitoring of borehole fluid pressure, as a proxy for formation volumetric strain, at a site ∼20 km landward of the Cascadia subduction deformation front since 2010. The multi‐depth pressure records were plagued by hydrologic noise, but noise at the deepest monitoring level (303 m sub‐seafloor) abated in 2015. Subsequently, including at the times of regional large earthquakes that caused significant dynamic stressing, no persistent pressure transients are present above a threshold of 0.08 kPa imposed by unremovable oceanographic signals, corresponding to a strain detection limit of ∼16 nanostrain. Simple dislocation models using local megathrust geometry suggest a resolvable slip of <1 cm along a trench‐normal corridor beneath the borehole for a range of slip‐patch dimensions. A large slip patch can be well resolved even at considerable along‐strike distances from the borehole; for instance, ∼10 cm slip is detectable over a 200‐km strike range for a slip‐patch radius of ∼50 km. This high sensitivity for detecting slip, along with the lack of observed events, stands in stark contrast to observations at other subduction zones, and suggests that the Northern Cascadia megathrust is most likely fully locked.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Heesemann, Martin (2)
-
Schlesinger, Angela (2)
-
Becker, Keir (1)
-
Davis, Earl E. (1)
-
Farrugia, Joseph J. (1)
-
Krauss, Zoe (1)
-
Kukovica, Jacob (1)
-
Sun, Tianhaozhe (1)
-
Wilcock, William S. D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Krauss, Zoe ; Wilcock, William S. D. ; Heesemann, Martin ; Schlesinger, Angela ; Kukovica, Jacob ; Farrugia, Joseph J. ( , Journal of Geophysical Research: Solid Earth)
Abstract We use ocean bottom seismometer data from the Endeavour segment of the Juan de Fuca ridge to construct a long‐term earthquake catalog for an intermediate spreading rate mid‐ocean ridge. We present >50,000 new earthquake locations for 2016–2021 from the Ocean Networks Canada NEPTUNE cabled observatory and relocate earthquakes from two autonomous networks in 1995 and 2003–2006. The catalog comprises >85,000 earthquakes located using three‐dimensional segment‐scale
P andS wave velocity models from a prior tomography experiment. Despite the small footprints of networks near the segment center, locations show good agreement with geologic features at segment ends. The improved locations show that the northern Endeavour segment ruptured southwards from 48.3°N to 48.05°N during two diking events in early 2005, possibly accompanied by diking on the West Valley (WV) propagator. Persistent off‐axis seismicity near the segment center appears to be related to the WV and Cobb propagating rifts which we infer extend ∼10 km closer to the Endeavour segment center than is apparent in bathymetry. We suggest that the proximity of the propagators to the Endeavour vent fields (VFs) contributes to the localization, vigor, and longevity of the fields by focusing permeability through ongoing fracturing and by limiting extrusive magmatism through degassing of the axial magma lens. Increasing rates of seismicity beneath the VFs beginning in late 2018 and a deepening of earthquakes in 2020 indicate that the central portion of the segment may be entering the later stages of the eruptive cycle.