skip to main content

Search for: All records

Creators/Authors contains: "Schlom, D. G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It has been suggested that Ba3In2O6might be a high-Tcsuperconductor. Experimental investigation of the properties of Ba3In2O6was long inhibited by its instability in air. Recently epitaxial Ba3In2O6with a protective capping layer was demonstrated, which finally allows its electronic characterization. The optical bandgap of Ba3In2O6is determined to be 2.99 eV in-the (001) plane and 2.83 eV along thec-axis direction by spectroscopic ellipsometry. First-principles calculations were carried out, yielding a result in good agreement with the experimental value. Various dopants were explored to induce (super-)conductivity in this otherwise insulating material. NeitherA- norB-site doping proved successful. The underlying reason is predominately the formation of oxygen interstitials as revealed by scanning transmission electron microscopy and first-principles calculations. Additional efforts to induce superconductivity were investigated, including surface alkali doping, optical pumping, and hydrogen reduction. To probe liquid-ion gating, Ba3In2O6was successfully grown epitaxially on an epitaxial SrRuO3bottom electrode. So far none of these efforts induced superconductivity in Ba3In2O6,leaving the answer to the initial question of whether Ba3In2O6is a high-Tcsuperconductor to be ‘no’ thus far.

    more » « less
  2. Alkali antimonide semiconductor photocathodes provide a promising platform for the generation of high-brightness electron beams, which are necessary for the development of cutting-edge probes, including x-ray free electron lasers and ultrafast electron diffraction. Nonetheless, to harness the intrinsic brightness limits in these compounds, extrinsic degrading factors, including surface roughness and contamination, must be overcome. By exploring the growth of CsxSb thin films monitored by in situ electron diffraction, the conditions to reproducibly synthesize atomically smooth films of CsSb on 3C–SiC (100) and graphene-coated TiO2 (110) substrates are identified, and detailed structural, morphological, and electronic characterization is presented. These films combine high quantum efficiency in the visible (up to 1.2% at 400 nm), an easily accessible photoemission threshold of 566 nm, low surface roughness (down to 600 pm on a 1 μm scale), and a robustness against oxidation up to 15 times greater than Cs3Sb. These properties lead us to suggest that CsSb has the potential to operate as an alternative to Cs3Sb in electron source applications where the demands of the vacuum environment might otherwise preclude the use of traditional alkali antimonides.

    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. null (Ed.)
  4. null (Ed.)
    Abstract Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO 2 thin films on (110)-oriented TiO 2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals. 
    more » « less