skip to main content


Search for: All records

Creators/Authors contains: "Schmeeckle, Mark W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Estimates of the onset of sediment motion are integral for flood protection and river management but are often highly inaccurate. The critical shear stress (τ*c) for grain entrainment is often assumed constant, but measured values can vary by almost an order of magnitude between rivers. Such variations are typically explained by differences in measurement methodology, grain size distributions, or flow hydraulics, whereas grain resistance to motion is largely assumed to be constant. We demonstrate that grain resistance varies strongly with the bed structure, which is encapsulated by the particle height above surrounding sediment (protrusion,p) and intergranular friction (ϕf). We incorporate these parameters into a novel theory that correctly predicts resisting forces estimated in the laboratory, field, and a numerical model. Our theory challenges existing models, which significantly overestimate bed mobility. In our theory, small changes inpandϕfcan induce large changes inτ*cwithout needing to invoke variations in measurement methods or grain size. A data compilation also reveals that scatter in empirical values ofτ*ccan be partly explained by differences inpbetween rivers. Therefore, spatial and temporal variations in bed structure can partly explain the deviation ofτ*cfrom an assumed constant value. Given that bed structure is known to vary with applied shear stresses and upstream sediment supply, we conclude that a constantτ*cis unlikely. Values ofτ*care not interchangeable between streams, or even through time in a given stream, because they are encoded with the channel history.

     
    more » « less
  2. ABSTRACT

    Over 3.7 billion years of Earth history, life has evolved complex adaptations to help navigate and interact with the fluid environment. Consequently, fluid dynamics has become a powerful tool for studying ancient fossils, providing insights into the palaeobiology and palaeoecology of extinct organisms from across the tree of life. In recent years, this approach has been extended to the Ediacara biota, an enigmatic assemblage of Neoproterozoic soft‐bodied organisms that represent the first major radiation of macroscopic eukaryotes. Reconstructing the ways in which Ediacaran organisms interacted with the fluids provides new insights into how these organisms fed, moved, and interacted within communities. Here, we provide an in‐depth review of fluid physics aimed at palaeobiologists, in which we dispel misconceptions related to the Reynolds number and associated flow conditions, and specify the governing equations of fluid dynamics. We then review recent advances in Ediacaran palaeobiology resulting from the application of computational fluid dynamics (CFD). We provide a worked example and account of best practice in CFD analyses of fossils, including the first large eddy simulation (LES) experiment performed on extinct organisms. Lastly, we identify key questions, barriers, and emerging techniques in fluid dynamics, which will not only allow us to understand the earliest animal ecosystems better, but will also help to develop new palaeobiological tools for studying ancient life.

     
    more » « less