skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schmelzle, Jan-Niklas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 17, 2025
  2. Abstract Language Models (LM) have been extensively utilized for learning DNA sequence patterns and generating synthetic sequences. In this paper, we present a novel approach for the generation of synthetic DNA data using pangenomes in combination with LM. We introduce three innovative pangenome-based tokenization schemes, including two that can decouple from private data, while enhance long DNA sequence generation. Our experimental results demonstrate the superiority of pangenome-based tokenization over classical methods in generating high-utility synthetic DNA sequences, highlighting a promising direction for the public sharing of genomic datasets. 
    more » « less
  3. Robinson, Peter (Ed.)
    Abstract MotivationThe increasing availability of complete genomes demands for models to study genomic variability within entire populations. Pangenome graphs capture the full genomic similarity and diversity between multiple genomes. In order to understand them, we need to see them. For visualization, we need a human-readable graph layout: a graph embedding in low (e.g. two) dimensional depictions. Due to a pangenome graph’s potential excessive size, this is a significant challenge. ResultsIn response, we introduce a novel graph layout algorithm: the Path-Guided Stochastic Gradient Descent (PG-SGD). PG-SGD uses the genomes, represented in the pangenome graph as paths, as an embedded positional system to sample genomic distances between pairs of nodes. This avoids the quadratic cost seen in previous versions of graph drawing by SGD. We show that our implementation efficiently computes the low-dimensional layouts of gigabase-scale pangenome graphs, unveiling their biological features. Availability and implementationWe integrated PG-SGD in ODGI which is released as free software under the MIT open source license. Source code is available at https://github.com/pangenome/odgi. 
    more » « less