Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2025
-
ABSTRACT Blazars display variable emission across the entire electromagnetic spectrum, with time-scales that can range from a few minutes to several years. Our recent work has shown that a sample of five blazars exhibit hints of periodicity with a global significance ${\gtrsim}2\, \sigma$ at γ-ray energies, in the range of 0.1 GeV < E < 800 GeV. In this work, we study their multiwavelength emission, covering the X-ray, ultraviolet, optical, and radio bands. We show that three of these blazars present similar periodic patterns in the optical and radio bands. Additionally, fluxes in the different bands of the five blazars are correlated, suggesting a co-spatial origin. Moreover, we detect a long-term (≈10 yr) rising trend in the light curves of PG 1553+113, and we use it to infer possible constraints on the binary black hole hypothesis.
-
The recent development of three-dimensional graphic statics using polyhedral reciprocal diagrams (PGS) has greatly increased the ease of designing complex yet efficient spatial funicular structural forms, where the inherent planarity of the polyhedral geometries can be harnessed for efficient construction processes. Our previous research has shown the feasibility of leveraging this planarity in materializing a 10m-span, double-layer glass bridge made of 1cm glass sheets. This paper presents a smaller bridge prototype with a span of 2.5m to address the larger bridge’s challenges regarding form-finding, detail developments, fabrication constraints, and assembly logic. The compression-only prototype is designed for prefabrication as a modular system using PolyFrame for Rhinoceros. Thirteen polyhedral cells of the funicular bridge are materialized in the form of hollow glass units (HGUs) and can be prefabricated and assembled on-site. Each HGU consists of two deck plates and multiple side plates held together using 3M™ Very High Bond (VHB) tape. A male-female glass connection mechanism is developed at the sides of HGUs to interlock each unit with its adjacent cells to prevent sliding. A transparent interface material is placed between the male and female connecting parts to avoid local stress concentration. This novel construction method significantly simplifies the bridge’s assembly on a large scale. The design and construction of this small-scale prototype set the foundation for the future development of the full-scale structure.more » « less
-
The weak-wind boundary layer is characterized by turbulent and submeso-scale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber Optic Distributed Sensing (FODS) potentially opens the door to observing a wide-range of atmospheric processes on a spatially 5 distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of second and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively-heated fiber-optic cables with opposing orientations to impose directionally-sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of arange of microstructure parameters including aspect ratio, 10 spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally-sensitive heat loss is explored using Computational Fluid Dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.more » « less
-
The weak-wind boundary layer is characterized by turbulent and submeso-scale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber-Optic Distributed Sensing (FODS) potentially opens the door to observing a wide-range of atmospheric processes on a spatially distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of second and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively-heated fiber-optic cables with opposing orientations to impose directionally-sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of a range of microstructure parameters including aspect ratio, spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally-sensitive heat loss is explored using Computational Fluid Dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources.
Free, publicly-accessible full text available November 1, 2025