skip to main content

Search for: All records

Creators/Authors contains: "Schneider, Matthew M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robust atomic-to-meso-scale chirality is now observed in the one-dimensional form of tellurium. This enables a large and counter-intuitive circular-polarization dependent second harmonic generation response above 0.2 which is not present in two-dimensional tellurium. Orientation variations in 1D tellurium nanowires obtained by four-dimensional scanning transmission electron microscopy (4D-STEM) and their correlation with unconventional non-linear optical properties by second harmonic generation circular dichroism (SHG-CD) uncovers an unexpected circular-polarization dependent SHG response from 1D nanowire bundles – an order-of-magnitude higher than in single-crystal two-dimensional tellurium structures – suggesting the atomic- and meso-scale crystalline structure of the 1D material possesses an inherent chirality not present in its 2D form; and which is strong enough to manifest even in the aggregate non-linear optical (NLO) properties of aggregates.
  2. Abstract

    Actinide materials have various applications that range from nuclear energy to quantum computing. Most current efforts have focused on bulk actinide materials. Tuning functional properties by using strain engineering in epitaxial thin films is largely lacking. Using uranium dioxide (UO2) as a model system, in this work, the authors explore strain engineering in actinide epitaxial thin films and investigate the origin of induced ferromagnetism in an antiferromagnet UO2. It is found that UO2+xthin films are hypostoichiometric (x<0) with in‐plane tensile strain, while they are hyperstoichiometric (x>0) with in‐plane compressive strain. Different from strain engineering in non‐actinide oxide thin films, the epitaxial strain in UO2is accommodated by point defects such as vacancies and interstitials due to the low formation energy. Both epitaxial strain and strain relaxation induced point defects such as oxygen/uranium vacancies and oxygen/uranium interstitials can distort magnetic structure and result in magnetic moments. This work reveals the correlation among strain, point defects and ferromagnetism in strain engineered UO2+xthin films and the results offer new opportunities to understand the influence of coupled order parameters on the emergent properties of many other actinide thin films.