Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We measure the branching fraction of the decay using data collected with the Belle II detector. The data contain 387 million pairs produced in collisions at the resonance. We reconstruct decays from an analysis of the distributions of the energy and the helicity angle. We determine the branching fraction to be , in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two. Published by the American Physical Society2024more » « less
-
We search for the rare decay in a sample of electron-positron collisions at the resonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanying meson in events to suppress background from other decays of the signal candidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanying meson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for the branching fraction of and , respectively. Combining the results, we determine the branching fraction of the decay to be , providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation. Published by the American Physical Society2024more » « less
-
A<sc>bstract</sc> We measureCPasymmetries and branching-fraction ratios forB±→ DK±andDπ±decays withD →$$ {K}_{\textrm{S}}^0 $$ K±π∓, whereDis a superposition ofD0and$$ \overline{D} $$ 0. We use the full data set of the Belle experiment, containing 772×106$$ B\overline{B} $$ pairs, and data from the Belle II experiment, containing 387 × 106$$ B\overline{B} $$ pairs, both collected in electron-positron collisions at the Υ(4S) resonance. Our results provide model-independent information on the unitarity triangle angleϕ3.more » « less
-
The production of and mesons in lead-lead (Pb-Pb) and proton-proton ( ) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The meson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb and collisions are reported for both the and mesons, as functions of transverse momentum and Pb-Pb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of yields in Pb-Pb collisions. This suppression increases from peripheral to central Pb-Pb collisions. Furthermore, the suppression is stronger for mesons compared to mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the , , , and mesons. © 2024 CERN, for the CMS Collaboration2024CERNmore » « lessFree, publicly-accessible full text available July 1, 2025
-
A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of collected in 2016–2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta ( ), back-to-back in azimuth, and with a large diphoton invariant mass ( ) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters and , using an effective field theory. Additionally, upper limits are placed on the production of axionlike particles with coupling strength to photons that varies from to over the mass range from 500 to 2000 GeV. © 2024 CERN, for the CMS and TOTEMs Collaboration2024CERNmore » « lessFree, publicly-accessible full text available July 1, 2025
-
A<sc>bstract</sc> A search for the central exclusive production of top quark-antiquark pairs ($$ \textrm{t}\overline{\textrm{t}} $$ ) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb−1. The$$ \textrm{t}\overline{\textrm{t}} $$ decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.more » « less