skip to main content

Search for: All records

Creators/Authors contains: "Scholes, Gregory D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Light absorption by molecular exciton states in disordered networks is studied. The main purpose of this paper is to look at how phases of the intermediate ground–excited state superposition interfere during the absorption process. How does this phase average enable, or suppress, absorption to a delocalized state? To address this question, a theory for phase oscillators is used to predict the purity of the collective excited state of the network. The results of the study suggest that collective absorption by molecular exciton states requires a sufficiently large electronic coupling between molecules in the network compared to the random distribution of transition energies at the sites, even when the molecular network is completely isolated from the environment degrees of freedom. The ‘dividing line’ between absorption to a mixture of, essentially, localized excited states and coherent excitation of a pure delocalized exciton state is suggested to be predicted by the threshold of phase synchronization.
    Free, publicly-accessible full text available September 1, 2023
  2. The complex, [{[Mn(bpy)(CO) 3 ] 2 }(μ-CN)] + (Mn2CN+), has previously been shown to photochemically reduce CO 2 to CO. The detailed mechanism behind its reactivity was not elucidated. Herein, the photoevolution of this reaction is studied in acetonitrile (MeCN) using IR and UV-vis spectroscopy. Samples were excited into the Mn I → π* bpy metal-to-ligand charge transfer (MLCT) absorption band triggering CO loss, and rapid MeCN solvent ligation at the open coordination site. It is concluded that this process occurs selectively at the Mn axial ligation site that is trans to the C-end of the bridging cyanide. Upon further photolysis, the metal–metal bonded dimeric species, [(CO) 3 (bpy)Mn–Mn(bpy)(CO) 3 ] (Mn–Mn) is observed to form under anaerobic conditions. The presence of this dimeric species coincides with the observation of CO production. When oxygen is present, CO 2 photoreduction does not occur, which is attributed to the inability of Mn2CN+ to convert to the metal–metal bonded dimer. Photolysis experiments, where the Mn–Mn dimer is formed photochemically under argon first and then exposed to CO 2 , reveal that it is the radical species, [Mn(bpy)(CO) 3 ˙ ] ( Mn˙ ), that interacts with the CO 2 . Since the presencemore »of Mn–Mn and light is required for CO production, [Mn(bpy)(CO) 3 ˙] is proposed to be a photochemical reagent for the transformation of CO 2 to CO.« less
    Free, publicly-accessible full text available November 21, 2023
  3. [Mn(bpy)(CO) 3 Br] is recognized as a benchmark electrocatalyst for CO 2 reduction to CO, with the doubly reduced [Mn(bpy)(CO) 3 ] − proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO 2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO) 4 ] + , thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO) 4 ][SbF 6 ] ( 1 ) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO 2 to CO in the presence of H 2 O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g. , [Mn(bpy)(CO) 3 Br] ( 2 ) and [Mn(bpy)(CO) 3 (MeCN)][PF 6 ] ( 3 ). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1 , producing a [Mn(bpy)(CO) 3 (MeCN)] + species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO 2 reduction.
  4. The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currentsmore »in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.

    « less