skip to main content


Search for: All records

Creators/Authors contains: "Scholtz, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use deep imaging from the JWST Advanced Deep Extragalactic Survey (JADES) to study the evolution of the ionizing photon production efficiency, ξion. We estimate ξion for a sample of 677 galaxies at z ∼ 4–9 using NIRCam (Near-Infrared Camera) photometry. Specifically, combinations of the medium and wide bands F335M–F356W and F410M–F444W to constrain emission lines that trace ξion: Hα and [O iii]. Additionally, we use the spectral energy distribution fitting code prospector to fit all available photometry and infer galaxy properties. The flux measurements obtained via photometry are consistent with FRESCO (First Reionisation Epoch Spectroscopic Complete Survey) and NIRSpec-derived fluxes. Moreover, the emission-line-inferred measurements are consistent with the prospector estimates. We also confirm the observed ξion trend with redshift and MUV, and find: log ξion(z, MUV) = (0.05 ± 0.02)z + (0.11 ± 0.02)MUV + (27.33 ± 0.37). We use prospector to investigate correlations of ξion with other galaxy properties. We see a clear correlation between ξion and burstiness in the star formation history of galaxies, given by the ratio of recent to older star formation, where burstiness is more prevalent at lower stellar masses. We also convolve our ξion relations with luminosity functions from the literature, and constant escape fractions of 10 per cent and 20 per cent, to place constraints on the cosmic ionizing photon budget. By combining our results, we find that if our sample is representative of the faint low-mass galaxy population, galaxies with bursty star formation are efficient enough in producing ionizing photons and could be responsible for the reionization of the Universe.

     
    more » « less
  2. ABSTRACT

    Gaseous outflows are key phenomena in the evolution of galaxies, as they affect star formation (either positively or negatively), eject gas from the core or disc, and directly cause mixing of pristine and processed material. Active outflows may be detected through searches for broad spectral line emission or high-velocity gas, but it is also possible to determine the presence of past outflows by searching for extended reservoirs of chemically enriched molecular gas in the circumgalactic medium (CGM) around galaxies. In this work, we examine the CO(3−2) emission of a set of seven z ∼ 2.0–2.5 active galactic nuclei (AGN) host galaxies, as observed with ALMA. Through a 3D stacking analysis, we find evidence for extended CO emission of radius r ∼ 13 kpc. We extend this analysis to the HST/ACS i-band images of the sample galaxies, finding a complex small-scale (r < 10 kpc) morphology but no robust evidence for extended emission. In addition, the dust emission (traced by rest-frame FIR emission) shows no evidence for significant spatial extension. This indicates that the diffuse CO emission revealed by ALMA is morphologically distinct from the stellar component, and thus traces an extended reservoir of enriched gas. The presence of a diffuse, enriched molecular reservoir around this sample of AGN host galaxies at cosmic noon hints at a history of AGN-driven outflows that likely had strong effects on the star formation history of these objects.

     
    more » « less