skip to main content

Search for: All records

Creators/Authors contains: "Schreck, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holographic cloud probes provide unprecedented information on cloud particle density, size and position. Each laser shot captures particles within a large volume, where images can be computationally refocused to determine particle size and location. However, processing these holograms with standard methods or machine learning (ML) models requires considerable computational resources, time and occasional human intervention. ML models are trained on simulated holograms obtained from the physical model of the probe since real holograms have no absolute truth labels. Using another processing method to produce labels would be subject to errors that the ML model would subsequently inherit. Models perform well on real holograms only when image corruption is performed on the simulated images during training, thereby mimicking non-ideal conditions in the actual probe. Optimizing image corruption requires a cumbersome manual labeling effort. Here we demonstrate the application of the neural style translation approach to the simulated holograms. With a pre-trained convolutional neural network, the simulated holograms are “stylized” to resemble the real ones obtained from the probe, while at the same time preserving the simulated image “content” (e.g. the particle locations and sizes). With an ML model trained to predict particle locations and shapes on the stylized data sets, we observed comparable performance on both simulated and real holograms, obviating the need to perform manual labeling. The described approach is not specific to holograms and could be applied in other domains for capturing noise and imperfections in observational instruments to make simulated data more like real world observations.

    more » « less
  2. Heuristic algorithms can generalize the design process of stiff and round capsule-like nanostructures made from DNA. 
    more » « less
  3. Abstract

    Flows in the atmospheric boundary layer are turbulent, characterized by a large Reynolds number, the existence of a roughness sublayer and the absence of a well-defined viscous layer. Exchanges with the surface are therefore dominated by turbulent fluxes. In numerical models for atmospheric flows, turbulent fluxes must be specified at the surface; however, surface fluxes are not known a priori and therefore must be parametrized. Atmospheric flow models, including global circulation, limited area models, and large-eddy simulation, employ Monin–Obukhov similarity theory (MOST) to parametrize surface fluxes. The MOST approach is a semi-empirical formulation that accounts for atmospheric stability effects through universal stability functions. The stability functions are determined based on limited observations using simple regression as a function of the non-dimensional stability parameter representing a ratio of distance from the surface and the Obukhov length scale (Obukhov in Trudy Inst Theor Geofiz AN SSSR 1:95–115, 1946),$$z/L$$z/L. However, simple regression cannot capture the relationship between governing parameters and surface-layer structure under the wide range of conditions to which MOST is commonly applied. We therefore develop, train, and test two machine-learning models, an artificial neural network (ANN) and random forest (RF), to estimate surface fluxes of momentum, sensible heat, and moisture based on surface and near-surface observations. To train and test these machine-learning algorithms, we use several years of observations from the Cabauw mast in the Netherlands and from the National Oceanic and Atmospheric Administration’s Field Research Division tower in Idaho. The RF and ANN models outperform MOST. Even when we train the RF and ANN on one set of data and apply them to the second set, they provide more accurate estimates of all of the fluxes compared to MOST. Estimates of sensible heat and moisture fluxes are significantly improved, and model interpretability techniques highlight the logical physical relationships we expect in surface-layer processes.

    more » « less
  4. Li, Jinyan (Ed.)
    Selection protocols such as SELEX, where molecules are selected over multiple rounds for their ability to bind to a target of interest, are popular methods for obtaining binders for diagnostic and therapeutic purposes. We show that Restricted Boltzmann Machines (RBMs), an unsupervised two-layer neural network architecture, can successfully be trained on sequence ensembles from single rounds of SELEX experiments for thrombin aptamers. RBMs assign scores to sequences that can be directly related to their fitnesses estimated through experimental enrichment ratios. Hence, RBMs trained from sequence data at a given round can be used to predict the effects of selection at later rounds. Moreover, the parameters of the trained RBMs are interpretable and identify functional features contributing most to sequence fitness. To exploit the generative capabilities of RBMs, we introduce two different training protocols: one taking into account sequence counts, capable of identifying the few best binders, and another based on unique sequences only, generating more diverse binders. We then use RBMs model to generate novel aptamers with putative disruptive mutations or good binding properties, and validate the generated sequences with gel shift assay experiments. Finally, we compare the RBM’s performance with different supervised learning approaches that include random forests and several deep neural network architectures. 
    more » « less
  5. null (Ed.)
    Abstract Nucleic acid interactions under crowded environments are of great importance for biological processes and nanotechnology. However, the kinetics and thermodynamics of nucleic acid interactions in a crowded environment remain poorly understood. We use a coarse-grained model of DNA to study the kinetics and thermodynamics of DNA duplex and hairpin formation in crowded environments. We find that crowders can increase the melting temperature of both an 8-mer DNA duplex and a hairpin with a stem of 6-nt depending on the excluded volume fraction of crowders in solution and the crowder size. The crowding induced stability originates from the entropic effect caused by the crowding particles in the system. Additionally, we study the hybridization kinetics of DNA duplex formation and the formation of hairpin stems, finding that the reaction rate kon is increased by the crowding effect, while koff is changed only moderately. The increase in kon mostly comes from increasing the probability of reaching a transition state with one base pair formed. A DNA strand displacement reaction in a crowded environment is also studied with the model and we find that rate of toehold association is increased, with possible applications to speeding up strand displacement cascades in nucleic acid nanotechnology. 
    more » « less