Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract 3,3′,5,5′‐Tetra‐
tert ‐butyl‐2′‐sulfanyl[1,1′‐biphenyl]‐2‐ol (H2[t Bu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[t Bu4OS] to Mo(NAr)(CHCMe2Ph)(2,5‐dimethylpyrrolide)2led to formation of Mo(NAr)(CHCMe2Ph)[t Bu4OS], which was trapped with PMe3to give Mo(NAr)(CHCMe2Ph)[t Bu4OS](PMe3) (1 (PMe3)). An X‐ray crystallographic study of1 (PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both1 (PMe3)Aand1 (PMe3)Bare disordered. Mo(NAd)(CHCMe2Ph)(t Bu4OS)(PMe3) (2 (PMe3); Ad=1‐adamantyl) and W(NAr)(CHCMe2Ph)(t Bu4OS)(PMe3) (3 (PMe3)) were prepared using analogous approaches.1 (PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(t Bu4OS)(C2H4) (4 ) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X‐ray study shows that the bond distances and angles for the ethylene ligand in4 are like those found for bisalkoxide ethylene complexes of the same general type. Complex1 (PMe3) in the presence of one equivalent of B(C6F5)3catalyzes the homocoupling of 1‐decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature.1 (PMe3),2 (PMe3), and3 (PMe3) all catalyze the ROMP ofrac ‐endo ,exo ‐5,6‐dicarbomethoxynorbornene (rac ‐DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure. -
We synthesized Mo(
NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)Cl (TPPO = 2,3,5,6‐tetraphenylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(TTBTO )(PP hMe2)Cl (TTBTO = 2,6‐di(3′,5′‐di‐tert ‐butylphenyl)phenoxide), and Mo(NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)(CF 3Pyr) (CF 3Pyr = 3,4‐bistrifluoromethylpyrrolide), in order to evaluate them as catalysts for the homocoupling of 3‐methyl‐1‐butene. They were compared with Mo(NC 6F5)(CHCM e2Ph)(HMTO )(PP hMe2)Cl (HMTO = 2,6‐dimesitylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(HIPTO )(PP hMe2)Cl (HIPTO = 2,6‐di(2′,4′,6′‐triisopropylphenyl)phenoxide), and several other Mo and Ru catalysts. In the best cases turnover numbers (TON s) of 400 – 700 were observed for the homocoupling of 3‐methyl‐1‐butene in a closed vessel (ethylene not removed).