skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Schroeder, Hayley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As natural landscapes are modified and converted into simplified agricultural landscapes, the community composition and interactions of organisms persisting in these modified landscapes are altered. While many studies examine the consequences of these changing interactions for crops, few have evaluated the effects on wild plants. Here, we examine how pollinator and herbivore interactions affect reproductive success for wild resident and phytometer plants at sites along a landscape gradient ranging from natural to highly simplified. We tested the direct and indirect effects of landscape composition on plant traits and reproduction mediated by insect interactions. For phytometer plants exposed to herbivores, we found that greater landscape complexity corresponded with elevated herbivore damage, which reduced total flower production but increased individual flower size. Though larger flowers increased pollination, the reduction in flowers ultimately reduced plant reproductive success. Herbivory was also higher in complex landscapes for resident plants, but overall damage was low and therefore did not have a cascading effect on floral display and reproduction. This work highlights that landscape composition directly affects patterns of herbivory with cascading effects on pollination and wild plant reproduction. Further, the absence of an effect on reproduction for resident plants suggests that they may be adapted to their local insect community.

     
    more » « less
  2. 1. Many migratory animals undergo physiological and behavioural changes to prepare for and sustain long‐distance movements. Because insect migrations are common and diverse, studies that examine how migratory insects meet the energetic demands of long‐distance movements are badly needed.

    2. Monarch butterflies (Danaus plexippus) migrate up to 4000 km annually from eastern North America to wintering sites in central Mexico. Autumn generation monarchs undergo physiological and behavioural changes in response to environmental cues to initiate migration. In particular, exposure to cooler temperatures and shorter day lengths in early autumn causes monarchs to enter the hormonally induced state of reproductive diapause.

    3. This study examined differences in flight‐associated metabolic rate (MR) and flight performance metrics for monarchs experimentally reared under autumn‐like conditions (typically experienced before the southward migration) relative to monarchs reared under summer‐like conditions.

    4. Adult monarchs reared under autumn‐like conditions showed lower post‐flight MRs, greater flight efficiency, and lower measures of reproductive activity relative to monarchs reared under summer‐like conditions. Increases in post‐flight metabolism were associated with monarch body weight, age, and flight velocity.

    5. These findings suggest that a trans‐generational shift in flight energetics is an important component of the monarch's complex migratory syndrome, and that physiological changes that accompany reproductive diapause facilitate energy conservation during flight.

     
    more » « less