Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A new growth approach, based on the hot-wall metalorganic chemical vapor deposition concept, is developed for high-quality homoepitaxial growth of Si-doped single-crystalline β-Ga2O3 layers on (010)-oriented native substrates. Substrate annealing in argon atmosphere for 1 min at temperatures below 600 °C is proposed for the formation of epi-ready surfaces as a cost-effective alternative to the traditionally employed annealing process in oxygen-containing atmosphere with a time duration of 1 h at about 1000 °C. It is shown that the on-axis rocking curve widths exhibit anisotropic dependence on the azimuth angle with minima for in-plane direction parallel to the [001] and maximum for the [100] for both substrate and layer. The homoepitaxial layers are demonstrated to have excellent structural properties with a β-Ga2O3(020) rocking curve full-widths at half-maximum as low as 11 arc sec, which is lower than the corresponding one for the substrates (19 arc sec), even for highly Si-doped (low 1019 cm−3 range) layers. Furthermore, the structural anisotropy in the layer is substantially reduced with respect to the substrate. Very smooth surface morphology of the epilayers with a root mean square roughness value of 0.6 nm over a 5 × 5 μm2 area is achieved along with a high electron mobility of 69 cm2 V−1 s−1 at a free carrier concentration n=1.9×1019 cm−3. These values compare well with state-of-the-art parameters reported in the literature for β-Ga2O3(010) homoepitaxial layers with respective Si doping levels. Thermal conductivity of 17.4 Wm−1K−1 is determined along the [010] direction for the homoepitaxial layers at 300 K, which approaches the respective value of bulk crystal (20.6 Wm−1K−1). This result is explained by a weak boundary effect and a low dislocation density in the homoepitaxial layers.more » « less
-
Previously, the infrared permittivity tensor of monoclinic β-Ga 2 O 3 crystals has been determined using ellipsometry reflection measurements from two differently oriented monoclinic β-Ga 2 O 3 crystals with surfaces parallel to (010) and (−201). The (010) surface places the crystallographic a-c plane in the table of the instrument. The permittivity tensor consists of four complex values, and in order to compute it, four or more combinations of measurements are required at selected table rotations and incidence angles. However, the (010) orientation also places the transverse optical (TO) modes with Au symmetry parallel to the z-axis of the instrument, and we find that these modes are not fully excited and, hence, not measurable due to underlying selection rules. This makes additional measurements on surfaces other than (010) necessary. The second orientation has been the (−201) crystal, which places the crystallographic b axis in the plane of the table to access the transverse Au phonons. In prior work, the overall tensor has been determined by combining measurements of the two crystal orientations [Schubert et al., Phys. Rev. B 93, 125209 (2016)]. The goal of the work here is to find single crystal orientations for which all TO modes can be determined from measurements. The use of a set of measurements employed for such a single crystal is inextricably linked to the choice of incidence angles and table rotations. Consequently, determining suitable angles for these is linked to the selection of a crystal orientation, which is, therefore, an integral part of the overall goal. The TO contribution to the permittivity strongly dominates at or near the TO mode wavenumber resonances and, therefore, are used in this work to identify suitable orientations for a single crystal. Any such crystal orientation will also provide measurements useful to compute permittivity across the entire measured wavenumber range. In principle, any crystal orientation that does not place the direction of any TO mode at or near the z-axis may be suitable due to the underlying physics and mathematics of the problem. We discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. For accuracy, we seek the best or very good orientations. Our investigation follows a previously demonstrated approach where at a single wavelength, the full tensor of an orthorhombic absorbing crystal was obtained from a low-symmetry surface of stibnite [Schubert and Dollase, Opt. Lett. 27, 2073 (2002)]. We discuss which of these measurement parameters contain the most sensitivity for the (111) orientation. The methods presented here will also be useful for other monoclinic materials as well as other materials of different crystal structures, including orthorhombic and triclinic materials.more » « less
An official website of the United States government

Full Text Available