skip to main content


Search for: All records

Creators/Authors contains: "Schubnell, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Galaxy scaling relations provide insights into the processes that drive galaxy evolution. The extension of these scaling relations into the dwarf galaxy regime is of particular interest. This is because dwarf galaxies represent a crucial stage in galaxy evolution, and understanding them could also shed light on their role in reionizing the early Universe. There is currently no consensus on the processes that dominate the evolution of dwarfs. In this work, we constrain the atomic gas sequence (stellar mass versus atomic gas fraction) and mass–metallicity relation (stellar mass versus gas-phase metallicity) from dwarf ($10^{6.5} \, {\rm M}_{\odot }$) to massive ($10^{11.5} \, {\rm M}_{\odot }$) galaxies in the local Universe. The combined optical and 21-cm spectroscopic observations of the Dark Energy Spectroscopic Instrument and Arecibo Legacy Fast ALFA surveys allow us to constrain both scaling relations simultaneously. We find a slope change of the atomic gas sequence at a stellar mass of ${\sim} 10^{9} \, \textrm{M}_{\odot }$. We also find that the shape and scatter of the atomic gas sequence and mass–metallicity relation are strongly linked for both dwarfs and more massive galaxies. Consequently, the low-mass slope change of the atomic gas sequence is imprinted onto the mass–metallicity relation of dwarf galaxies. The mass scale of the measured slope change is consistent with a predicted escape velocity threshold below which low-mass galaxies experience significant supernova-driven gas loss, as well as with a reduction in cold gas accretion onto more massive galaxies.

     
    more » « less
  2. Abstract

    Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightnessμeff,g>24.2magarcsec2are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses9.0<log(M/M)<11.0comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax–Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split bygicolor or surface brightnessμeff,g, we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed.

     
    more » « less
  3. Abstract

    We measure the clustering of Lyman Alpha Emitting galaxies (LAEs) selected from the One-hundred-square-degree DECam Imaging in Narrowbands (ODIN) survey, with spectroscopic follow-up from Dark Energy Spectroscopic Instrument (DESI). We use DESI spectroscopy to optimize our selection and to constrain the interloper fraction and redshift distribution of our narrow-band selected sources. We select samples of 4000 LAEs atz= 2.45 and 3.1 in 9 sq.deg. centered on the COSMOS field with median Lyα fluxes of ≈ 10-16erg s-1cm-2. Covariances and cosmological inferences are obtained from a series of mock catalogs built upon high-resolution N-body simulations that match the footprint, number density, redshift distribution and observed clustering of the sample. We find that both samples have a correlation length ofr0= 3.0 ± 0.2 h-1Mpc. Within our fiducial cosmology these correspond to 3D number densities of ≈ 10-3h3Mpc-3and, from our mock catalogs, biases of 1.7 and 2.0 atz= 2.45 and 3.1, respectively. We discuss the implications of these measurements for the use of LAEs as large-scale structure tracers for high-redshift cosmology.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. ABSTRACT

    Type Ia Supernovae (SNe Ia) are a critical tool in measuring the accelerating expansion of the universe. Recent efforts to improve these standard candles have focused on incorporating the effects of dust on distance measurements with SNe Ia. In this paper, we use the state-of-the-art Dark Energy Survey 5 year sample to evaluate two different families of dust models: empirical extinction models derived from SNe Ia data and physical attenuation models from the spectra of galaxies. In this work, we use realistic simulations of SNe Ia to forward-model different models of dust and compare summary statistics in order to test different assumptions and impacts on SNe Ia data. Among the SNe Ia-derived models, we find that a logistic function of the total-to-selective extinction $R_V$ best recreates the correlations between supernova distance measurements and host galaxy properties, though an additional 0.02 mag of grey scatter is needed to fully explain the scatter in SNIa brightness in all cases. These empirically derived extinction distributions are highly incompatible with the physical attenuation models from galactic spectral measurements. From these results, we conclude that SNe Ia must either preferentially select extreme ends of galactic dust distributions, or that the characterization of dust along the SNe Ia line-of-sight is incompatible with that of galactic dust distributions.

     
    more » « less
  5. Abstract

    The Dark Energy Spectroscopic Instrument (DESI) is a revolutionary instrument designed for precise measurements of cosmic distances and the investigation of dark energy. DESI utilizes 5000 optical fibers to simultaneously measure the spectra of distant objects and aims to measure 40 million galaxies and quasars in a 5 yr survey. One of the critical challenges to DESI’s success was ensuring that the fiber system was not only highly efficient but also delivered a highly stable beam enabling more reliable sky subtraction for measurements of faint objects. We achieved this stability by minimizing the stress on the fiber system during the manufacture and operation of the telescope and fiber positioning robots. We installed the DESI fiber system on the 4 m Mayall telescope with ≥99% of fibers intact, and the instrument has delivered superb optical performance throughout the initial years of the DESI survey, including ≥90% average throughput when injected with a focal ratio of ∼f/3.9 as delivered by the primary focus corrector, excluding fiber absorption losses. The design of DESI required multiple innovations to achieve these requirements, such as cleaved fibers bonded with a UV-curing epoxy to glass ferrules in the focal plane and fusion splicing instead of physical connectors. In this paper, we describe the development, delivery, and installation of the fiber system, the innovations that made the state-of-the-art performance possible, and the key lessons learned that could benefit future projects.

     
    more » « less
  6. ABSTRACT

    The Early Data Release (EDR) of the Dark Energy Spectroscopic Instrument (DESI) comprises spectroscopy obtained from 2020 December 14 to 2021 June 10. White dwarfs were targeted by DESI both as calibration sources and as science targets and were selected based on Gaia photometry and astrometry. Here, we present the DESI EDR white dwarf catalogue, which includes 2706 spectroscopically confirmed white dwarfs of which approximately 60 per cent have been spectroscopically observed for the first time, as well as 66 white dwarf binary systems. We provide spectral classifications for all white dwarfs, and discuss their distribution within the Gaia Hertzsprung–Russell diagram. We provide atmospheric parameters derived from spectroscopic and photometric fits for white dwarfs with pure hydrogen or helium photospheres, a mixture of those two, and white dwarfs displaying carbon features in their spectra. We also discuss the less abundant systems in the sample, such as those with magnetic fields, and cataclysmic variables. The DESI EDR white dwarf sample is significantly less biased than the sample observed by the Sloan Digital Sky Survey, which is skewed to bluer and therefore hotter white dwarfs, making DESI more complete and suitable for performing statistical studies of white dwarfs.

     
    more » « less
  7. ABSTRACT

    We use Dark Energy Survey Year 3 (DES Y3) clusters with archival XMM–Newton and Chandra X-ray data to assess the centring performance of the redMaPPer cluster finder and to measure key richness observable scaling relations. We find that 10–20 per cent of redMaPPer clusters are miscentred, both when comparing to the X-ray peak position and to the visually identified central cluster galaxy. We find no significant difference in miscentring in bins of low versus high richness or redshift. The dominant reasons for miscentring include masked or missing data and the presence of other bright galaxies in the cluster. For half of the miscentred clusters, the correct central was one of the possible centrals identified by redMaPPer, while for ∼40 per cent of miscentred clusters, the correct central is not a redMaPPer member mostly due to masking. Additionally, we fit scaling relations of X-ray temperature and luminosity with richness. We find a TX–λ scatter of $0.21\pm 0.01$. While the scatter in TX–λ is consistent in redshift bins, we find modestly different slopes, with high-redshift clusters displaying a somewhat shallower relation. Splitting based on richness, we find a marginally larger scatter for our lowest richness bin, 20 < λ < 40. We note that the robustness of the scaling relations at lower richnesses is limited by the unknown selection function, but at λ > 75, we detect nearly all of the clusters falling within existing X-ray pointings. The X-ray properties of detected, serendipitous clusters are generally consistent with those of targeted clusters.

     
    more » « less
  8. ABSTRACT

    We present a precise measurement of cosmological time dilation using the light curves of 1504 Type Ia supernovae from the Dark Energy Survey spanning a redshift range $0.1\lesssim z\lesssim 1.2$. We find that the width of supernova light curves is proportional to $(1+z)$, as expected for time dilation due to the expansion of the Universe. Assuming Type Ia supernovae light curves are emitted with a consistent duration $\Delta t_{\rm em}$, and parametrizing the observed duration as $\Delta t_{\rm obs}=\Delta t_{\rm em}(1+z)^b$, we fit for the form of time dilation using two methods. First, we find that a power of $b \approx 1$ minimizes the flux scatter in stacked subsamples of light curves across different redshifts. Secondly, we fit each target supernova to a stacked light curve (stacking all supernovae with observed bandpasses matching that of the target light curve) and find $b=1.003\pm 0.005$ (stat) $\pm \, 0.010$ (sys). Thanks to the large number of supernovae and large redshift-range of the sample, this analysis gives the most precise measurement of cosmological time dilation to date, ruling out any non-time-dilating cosmological models at very high significance.

     
    more » « less
  9. ABSTRACT

    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations ($L_{\rm box} = 2000\, h^{-1}\, {\rm Mpc}$ and Npart = 69123) as well as for the two huge simulations ($L_{\rm box} = 7500\, h^{-1}\, {\rm Mpc}$ and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy–shear, and shear–shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section).

     
    more » « less