skip to main content

Search for: All records

Creators/Authors contains: "Schultz, Jeremy F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development of new characterization methods has resulted in innovative studies of the properties of two-dimensional (2D) materials. Observations of nanoscale heterogeneity with scanning probe microscopy methods have led to efforts to further understand these systems and observe new local phenomena by coupling light-based measurement methods into the tip-sample junction. Bringing optical spectroscopy into the near-field in ultrahigh vacuum at cryogenic temperatures has led to highly unique studies of molecules and materials, yielding new insight into otherwise unobservable properties nearing the atomic scale. Here, we discuss studies of 2D materials at the subnanoscale where the measurement method relies on the detection of visible light scattered or emitted from the scanning tunneling microscope (STM). We focus on tip-enhanced Raman spectroscopy, a subset of scattering-type scanning near-field optical microscopy, where incident light is confined and enhanced by a plasmonic STM tip. We also mention scanning tunneling microscope induced luminescence, where the STM tip is used as a highly local light source. The measurement of light-matter interactions within the atomic STM cavity is expected to continue to provide a useful platform to study new materials. 
    more » « less
  2. Abstract Surface-bound reactions have become a viable method to develop nanoarchitectures through bottom-up assembly with near atomic precision. However, the bottom-up fabrication of nanostructures on surfaces requires careful consideration of the intrinsic properties of the precursors and substrate as well as the complex interplay of any interactions that arise in the heterogeneous two-dimensional (2D) system. Therefore, it becomes necessary to consider these systems with characterization methods sensitive to such properties with suitable spatial resolution. Here, low temperature ultrahigh vacuum scanning tunneling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS) were used to investigate the formation of 2D covalent networks via coupling reactions of tetra(4-bromophenyl)porphyrin (Br 4 TPP) molecules on a Ag(100) substrate. Through the combination of STM topographic imaging and TERS vibrational fingerprints, the conformation of molecular precursors on the substrate was understood. Following the thermally activated coupling reaction, STM and TERS imaging confirm the covalent nature of the 2D networks and suggest that the apparent disorder arises from molecular flexibility. 
    more » « less
  3. Abstract

    The chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B–O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.

    more » « less
  4. The ability to directly probe the adsorption configurations of organic regioisomeric molecules, specifically nonplanar isomers, on well-defined substrates holds promise to revolutionize fields dependent on nanoscale processes, such as catalysis, surface science, nanotechnology and modern day electronic applications. Herein, the adsorption configurations and surface sensitive interactions of two nonplanar regioisomer, trans - and cis -tetrakispentafluorophenylporphodilactone ( trans - and cis -H 2 F 20 TPPDL), molecules on (100) surfaces of Ag, Cu and Au were studied and investigated using high resolution scanning tunneling microscopy (STM), combined with ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Depending on molecule–substrate interactions, similar “phenyl-up” configurations were observed for these molecules on Ag(100) and Au(100), while a “phenyl-flat” configuration was discovered on a Cu(100) surface. With the help of surface selection rules of TERS, we explain the spectral discrepancies recorded on the Ag and Cu substrate. Furthermore, the intermolecular interactions were addressed using STM analysis on these surfaces after the configurations were determined by TERS. This study sheds light on the distinct configurations of regioisomeric porphodilactone systems (at interfaces) for near-infrared (NIR) photosensitizers and molecular electronics in the near future. 
    more » « less