skip to main content


Search for: All records

Creators/Authors contains: "Schultz, Kelly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Human mesenchymal stem cells (hMSCs) are instrumental in the wound healing process. They migrate to wounds from their native niche in response to chemical signals released during the inflammatory phase of healing. At the wound, hMSCs downregulate inflammation and regulate tissue regeneration. Delivering additional hMSCs to wounds using cell-laden implantable hydrogels has the potential to improve healing outcomes and restart healing in chronic wounds. For these materials to be effective, cells must migrate from the scaffold into the native tissue. This requires cells to traverse a step-change in material properties at the implant-tissue interface. Migration of cells in material with highly varying properties is not well characterized. We measure 3D encapsulated hMSC migration and remodeling in a well-characterized hydrogel with a step-change in stiffness. This cell-degradable hydrogel is composed of 4-arm poly(ethylene glycol)-norbornene cross-linked with an enzymatically-degradable peptide. The scaffold is made with two halves of different stiffnesses separated by an interface where stiffness changes rapidly. We characterize changes in structure and rheology of the pericellular region using multiple particle tracking microrheology (MPT). MPT measures Brownian motion of embedded particles and relates it to material rheology. We measure more remodeling in the soft region of the hydrogel than the stiff region on day 1 post-encapsulation and similar remodeling everywhere on day 6. In the interface region, we measure hMSC-mediated remodeling along the interface and migration towards the stiff side of the scaffold. These results can improve materials designed for cell delivery from implants to a wound to enhance healing. 
    more » « less
  2. Rheological modifiers tune product rheology with a small amount of material. To effectively use rheological modifiers, characterizing the rheology of the system at different compositions is crucial. Two colloidal rod system, hydrogenated castor oil and polyamide, are characterized in a formulation that includes a surfactant (linear alkylbenzene sulfonate) and a depletant (polyethylene oxide). We characterize both rod systems using multiple particle tracking microrheology (MPT) and bulk rheology and build phase diagrams over a large component composition space. In MPT, fluorescent particles are embedded in the sample and their Brownian motion is measured and related to rheological properties. From MPT, we determine that in both systems: (1) microstructure is not changed with increasing colloid concentration, (2) materials undergo a sol–gel transition as depletant concentration increases and (3) the microstructure changes but does not undergo a phase transition as surfactant concentration increases in the absence of depletant. When comparing MPT and bulk rheology results different trends are measured. Using bulk rheology we observe: (1) elasticity of both systems increase as colloid concentration increases and (2) the storage modulus does not change when PEO or LAS concentration is increased. The differences measured with MPT and bulk rheology are likely due to differences in sensitivity and measurement method. This work shows the utility of using both techniques together to fully characterize rheological properties over a large composition space. These gelation phase diagrams will provide a guide to determine the composition needed for desired rheological properties and eliminate trial-and-error experiments during product formulation. 
    more » « less
  3. Abstract

    Rheological modifiers are added to formulations to tune rheology, enable function and drive phase changes requiring an understanding of material structure and properties. We characterize two colloidal rod systems during phase transitions using multiple particle tracking microrheology, which measures the Brownian motion of probes embedded in a sample. These systems include a colloid (monodisperse polyamide or polydisperse hydrogenated castor oil), surfactant (linear alkylbenzene sulfonate [LAS]), and nonabsorbing polymer (polyethylene oxide [PEO]) which drives gelation by depletion interactions. Phase transitions are characterized at all concentrations using time‐cure superposition. We determine that rheological evolution depends onLAS:colloid. The critical PEO concentration required to form a gel,cc/c*, is independent ofLAS:colloid, critical relaxation exponent,n, is dependent onLAS:colloid, and both are independent of colloid polydispersity.nindicates the material structure at the phase transition. AtLAS:colloid > 16, the scaffold is a tightly associated network and atLAS:colloid = 16 a loosely associated network.

     
    more » « less
  4. Seed sourcing decisions affect short‐ and long‐term restoration outcomes. Seeds sourced closer to restoration sites are likely to be better adapted to local conditions and therefore may perform better than those sourced farther away, following assumptions of local adaptation. However, plants may not be adapted to future conditions under climate change; hence, managers are considering a predictive provenancing approach, where plant materials adapted to predicted conditions are used at a site. Currently, there is little empirical evidence available to inform this approach. To address this, we evaluate predictive provenancing using three species of forbs used in tallgrass prairie restorations (Allium cernuum,Chamaecrista fasciculata, andRudbeckia hirta) in a common garden experiment in northeastern Illinois, U.S.A. We compared the fitness in plants sourced from three regional zones across a latitudinal gradient that represents different climate projections, relative to the planting site. Data were analyzed using Aster life‐history models and generalized linear models. We found that source affected overall fitness in all three species, but no climate proxy had the highest fitness across all species. The performance at each life stage had different effects on overall fitness, which varied by source. We observed later reproductive phenology in southern‐sourced plants for all three species, possibly due to adaptation to longer growing seasons. The mixed results of this study suggest that climate proxy alone would not be sufficient to determine an effective and accurate predictive provenancing strategy. Long‐term tests are needed to pursue such a strategy for high‐priority species.

     
    more » « less