skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Schumacher, Russ S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Shortly after 0600 UTC (midnight local time) 9 June 2020, a convective line produced severe winds across parts of northeast Colorado that caused extensive damage, especially in the town of Akron. High-resolution observations showed gusts exceeding 50 m s−1, accompanied by extremely large pressure fluctuations, including a 5-hPa pressure surge in 19 s immediately following the strongest winds and a 15-hPa pressure drop in the following 3 min. Numerical simulations of this event (using the WRF Model) and with horizontally homogeneous initial conditions (using Cloud Model 1) reveal that the severe winds in this event were associated with gravity wave dynamics. In a very stable postfrontal environment, elevated convection initiated and led to a long-lived gravity wave. Strong low-level vertical wind shear supported the amplification and eventual breaking of this wave, resulting in at least two sequential strong downbursts. This wave-breaking mechanism is different from the usual downburst mechanism associated with negative buoyancy resulting from latent cooling. The model output reproduces key features of the high-resolution observations, including similar convective structures, large temperature and pressure fluctuations, and intense near-surface wind speeds. The findings of this study reveal a series of previously unexplored mesoscale and storm-scale processes that can result in destructive winds.

    Significance Statement

    Downbursts of intense wind can produce significant damage, as was the case on 9 June 2020 in Akron, Colorado. Past research on downbursts has shown that they occur when raindrops, graupel, and hail in thunderstorms evaporate and melt, cooling the air and causing it to sink rapidly. In this research, we used numerical models of the atmosphere, along with high-resolution observations, to show that the Akron downburst was different. Unlike typical lines of thunderstorms, those responsible for the Akron macroburst produced a wave in the atmosphere, which broke, resulting in rapidly sinking air and severe surface winds.

     
    more » « less
  2. Abstract Sierras de Córdoba (Argentina) is characterized by the occurrence of extreme precipitation events during the austral warm season. Heavy precipitation in the region has a large societal impact, causing flash floods. This motivates the forecast performance evaluation of 24-h accumulated precipitation and vertical profiles of atmospheric variables from different numerical weather prediction (NWP) models with the final aim of helping water management in the region. The NWP models evaluated include the Global Forecast System (GFS), which parameterizes convection, and convection-permitting simulations of the Weather Research and Forecasting (WRF) Model configured by three institutions: University of Illinois at Urbana–Champaign (UIUC), Colorado State University (CSU), and National Meteorological Service of Argentina (SMN). These models were verified with daily accumulated precipitation data from rain gauges and soundings during the RELAMPAGO-CACTI field campaign. Generally all configurations of the higher-resolution WRFs outperformed the lower-resolution GFS based on multiple metrics. Among the convection-permitting WRF Models, results varied with respect to rainfall threshold and forecast lead time, but the WRFUIUC mostly performed the best. However, elevation-dependent biases existed among the models that may impact the use of the data for different applications. There is a dry (moist) bias in lower (upper) pressure levels which is most pronounced in the GFS. For Córdoba an overestimation of the northern flow forecasted by the NWP configurations at lower levels was encountered. These results show the importance of convection-permitting forecasts in this region, which should be complementary to the coarser-resolution global model forecasts to help various users and decision-makers. 
    more » « less
  3. null (Ed.)
    Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage-IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016–17. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial midlevel dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large midlevel error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents. 
    more » « less
  4. Abstract Shortly after 0600 UTC (midnight MDT) on 9 June 2020, a rapidly intensifying and elongating convective system produced a macroburst and extensive damage in the town of Akron on Colorado’s eastern Plains. Instantaneous winds were measured as high as 51.12 m s −1 at 2.3 m AGL from an eddy covariance (EC) tower, and a 50.45 m s −1 wind gust from an adjacent 10-m tower became the highest official thunderstorm wind gust ever measured in Colorado. Synoptic-scale storm motion was southerly, but surface winds were northerly in a post-frontal airmass, creating strong vertical wind shear. Extremely high-resolution temporal and spatial observations allow for a unique look at pressure and temperature tendencies accompanying the macroburst and reveal intriguing wave structures in the outflow. At 10-Hz frequency, the EC tower recorded a 5-hPa pressure surge in 19 seconds immediately following the strongest winds, and a 15-hPa pressure drop in the following three minutes. Surface temperature also rose 1.5°C in less than one minute, concurrent with the maximum wind gusts, and then fell sharply by 3.5°C in the following minute. Shifting wind direction observations and an NWS damage survey are suggestive of both radial outflow and a gust front passage, and model proximity soundings reveal a well-mixed surface layer topped by a strong inversion and large low-level vertical wind shear. Despite the greatest risk of severe winds forecast to be northeast of Colorado, convection-allowing model forecasts from 6-18 h in advance did show similar structures to what occurred, warranting further simulations to investigate the unique mesoscale and misoscale features associated with the macroburst. 
    more » « less
  5. null (Ed.)
    Abstract Ensemble forecasts using the WRF Model at 20-km grid spacing with varying parameterizations are used to investigate and compare precipitation and atmospheric profile forecast biases in North and South America. By verifying a 19-member ensemble against NCEP Stage IV precipitation analyses, it is shown that the cumulus parameterization (CP), in addition to precipitation amount and season, had the largest influence on precipitation forecast skill in North America during 2016-2017. Verification of an ensemble subset against operational radiosondes in North and South America finds that forecasts in both continents feature a substantial mid-level dry bias, particularly at 700 hPa, during the warm season. Case-by-case analysis suggests that large mid-level error is associated with mesoscale convective systems (MCSs) east of the high terrain and westerly subsident flow from the Rocky and Andes Mountains in North and South America. However, error in South America is consistently greater than North America. This is likely attributed to the complex terrain and higher average altitude of the Andes relative to the Rockies, which allow for a deeper low-level jet and long-lasting MCSs, both of which 20-km simulations struggle to resolve. In the wake of data availability from the RELAMPAGO field campaign, the authors hope that this work motivates further comparison of large precipitating systems in North and South America, given their high impact in both continents. 
    more » « less
  6. null (Ed.)
    Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-yr TRMM PR and ERA5 datasets to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous midlevel trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multiday case during the RELAMPAGO field campaign (10–13 November 2018). Unique high-temporal-resolution soundings showed strong midlevel vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough–ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions. 
    more » « less
  7. null (Ed.)
    Abstract Subtropical South America (SSA) east of the Andes Mountains is a global hotspot for mesoscale convective systems (MCSs). Wide convective cores (WCCs) are typically embedded within mature MCSs, contribute over 40% of SSA’s warm-season rainfall, and are often associated with severe weather. Prior analysis of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data identified WCCs in SSA and associated synoptic conditions during austral summer. As WCCs also occur during the austral spring, this study uses the 16-year TRMM PR dataset and ERA5 reanalysis to compare anomalies in environmental conditions between austral spring (SON) and summer (DJF) for the largest and smallest WCCs in SSA. During both seasons, large WCCs are associated with an anomalous mid-level trough that slowly crosses the Andes Mountains and a northerly South American low-level jet (SALLJ) over SSA, though the SON trough and SALLJ anomalies are stronger and located farther northeastward than in DJF. A synoptic pattern evolution resembling large WCC environments is illustrated through a multi-day case during the RELAMPAGO field campaign (10-13 November 2018). Unique high-temporal resolution soundings showed strong mid-level vertical wind shear associated with this event, induced by the juxtaposition of the northerly SALLJ and southerly near-surface flow. It is hypothesized that the Andes help create a quasi-stationary trough/ridge pattern such that favorable synoptic conditions for deep convection persist for multiple days. For the smallest WCCs, anomalously weaker synoptic-scale forcing was present compared to the largest events, especially for DJF, pointing to future work exploring MCS formation under weaker synoptic conditions. 
    more » « less
  8. null (Ed.)
    Abstract In a mesoscale convective system (MCS), convection that redevelops over (i.e., back-builds), and/or repeatedly passes over (i.e., trains) a region for an extended period of time can contribute to extreme rainfall and flash flooding. Past studies have indicated that both mesoscale ascent and lifting of the inflow layer by a cold pool or bore are important when this back-building/training convection is displaced from the leading line [sometimes called rearward off-boundary development (ROD)]. However, Plains Elevated Convection At Night (PECAN) field campaign observations suggest that the stability of the nocturnal boundary layer is highly variable and some MCSs with ROD have only a weak surface cold pool. Numerical simulations presented in this study suggest that in an environment with strong boundary layer stability, ROD can be supported by mechanisms other than those mentioned above. Simulations were initialized using a sounding from ahead of a PECAN MCS with a strong stable layer and ROD, and the three-dimensional simulation produced an MCS similar to that observed despite the homogeneous initial conditions. Some of the findings presented herein challenge existing understanding of nocturnal MCSs, and especially how downdrafts interact with a stable boundary layer. Notably, downdrafts can reach the surface, and different regions of the MCS may have different propagation mechanisms and different relevant inflow layers. Unlike previous studies of ROD, parcel lifting may be supported by an intrusion (an elevated layer of downdraft air) modified by the three-dimensional vertical wind shear. 
    more » « less
  9. Abstract Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities. 
    more » « less