- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Loganathan, Narasimhan (2)
-
Ashby, Libby (1)
-
Schumm, Christina E (1)
-
Schumm, Christina E. (1)
-
Wilson, Angela K (1)
-
Wilson, Angela K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Following the global regulation of legacy PFAS molecules, fluorotelomer molecules have been widely employed as replacements to PFOS in aqueous film-forming foam (AFFF) and PFOA in other products. Recent field studies indicate that fluorotelomer molecules are increasingly identified in environmental settings including groundwater, soil and sediments. Consequently, gaining a comprehensive understanding of the fate and transport of fluorotelomers in soils and sedimentary environments is vital. In this study, the behavior of two different fluorotelomers, 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC, in three common soil minerals (kaolinite, montmorillonite and illite) having quite different interfacial properties are reported using molecular dynamics simulations. The interfacial adsorption and dynamical characteristics of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC vary substantially between the three minerals. Irrespective of the mineral composition, 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS exhibits surface complexation while 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC coordinates only with neutral and low charged clay minerals. In addition, the fundamental interactions that dictate the adsorption, interfacial structure of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS and 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC are completely different for the three minerals. The large, aggregated clusters of 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTS at the surface experienced greater stability for longer periods of time and restricted mobility than 6[thin space (1/6-em)]:[thin space (1/6-em)]2 FTC for all three clay minerals. Importantly, the current study provides cluster size dependent diffusion behavior of surface adsorbed fluorotelomer molecules in each clay mineral. Such detailed mechanistic insights are necessary to understand the environmental footprint of fluorotelomers around contaminated sites.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Schumm, Christina E.; Loganathan, Narasimhan; Wilson, Angela K. (, ACS ES&T Water)
An official website of the United States government
