Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show that GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C.more » « less
-
Solid oxide cells (SOCs) have important applications as fuel cells and electrolyzers. The application for storage of renewable electricity is also becoming increasingly relevant; however, it is difficult to meet stringent area-specific resistance (ASR) and long-term stability targets needed to achieve required efficiency and cost. Here we show a new SOC that utilizes a very thin Gd-doped ceria (GDC)/yttria-stabilized zirconia (YSZ) bi-layer electrolyte, Ni–YSZ cell support with enhanced porosity, and electrode surface modification using PrO x and GDC nanocatalysts to achieve unprecedented low ASR values < 0.1 Ω cm 2 , fuel cell power density ∼3 W cm −2 , and electrolysis current density ∼4 A cm −2 at 800 °C. Besides this exceptionally high performance, fuel cell and electrolysis life tests suggest very promising stability in fuel cell and steam electrolysis modes. Electrochemical impedance spectroscopy analysis done using a novel impedance subtraction method shows how rate-limiting electrode processes are impacted by the new SOC materials and design.more » « less