skip to main content

Search for: All records

Creators/Authors contains: "Scully, Marlan O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The generation of speckle patterns via random matrices, statistical definitions, or apertures may not always result in optimal outcomes. Issues such as correlation fluctuations in low ensemble numbers and diffraction in long-distance propagation can arise. Instead of improving results of specific applications, our solution is catching deep correlations of patterns with the framework, Speckle-Net, which is fundamental and universally applicable to various systems. We demonstrate this in computational ghost imaging (CGI) and structured illumination microscopy (SIM). In CGI with extremely low ensemble number, it customizes correlation width and minimizes correlation fluctuations in illuminating patterns to achieve higher-quality images. It also creates non-Rayleigh nondiffracting speckle patterns only through a phase mask modulation, which overcomes the power loss in the traditional ring-aperture method. Our approach provides new insights into the nontrivial speckle patterns and has great potential for a variety of applications including dynamic SIM, X-ray and photo-acoustic imaging, and disorder physics.

    more » « less
  2. Development of a simple, label-free screening technique capable of precisely and directly sensing interaction-in-solution over a size range from small molecules to large proteins such as antibodies could offer an important tool for researchers and pharmaceutical companies in the field of drug development. In this work, we present a thermostable Raman interaction profiling (TRIP) technique that facilitates low-concentration and low-dose screening of binding between protein and ligand in physiologically relevant conditions. TRIP was applied to eight protein–ligand systems, and produced reproducible high-resolution Raman measurements, which were analyzed by principal component analysis. TRIP was able to resolve time-depending binding between 2,4-dinitrophenol and transthyretin, and analyze biologically relevant SARS-CoV-2 spike-antibody interactions. Mixtures of the spike receptor–binding domain with neutralizing, nonbinding, or binding but nonneutralizing antibodies revealed distinct and reproducible Raman signals. TRIP holds promise for the future developments of high-throughput drug screening and real-time binding measurements between protein and drug. 
    more » « less
    Free, publicly-accessible full text available July 25, 2024
  3. Abstract

    Amino‐acid protein composition plays an important role in biology, medicine, and nutrition. Here, a groundbreaking protein analysis technique that quickly estimates amino acid composition and secondary structure across various protein sizes, while maintaining their natural states is introduced and validated. This method combines multivariate statistics and the thermostable Raman interaction profiling (TRIP) technique, eliminating the need for complex preparations. In order to validate the approach, the Raman spectra are constructed of seven proteins of varying sizes by utilizing their amino acid frequencies and the Raman spectra of individual amino acids. These constructed spectra exhibit a close resemblance to the actual measured Raman spectra. Specific vibrational modes tied to free amino and carboxyl termini of the amino acids disappear as signals linked to secondary structures emerged under TRIP conditions. Furthermore, the technique is used inversely to successfully estimate amino acid compositions and secondary structures of unknown proteins across a range of sizes, achieving impressive accuracy ranging between 1.47% and 5.77% of root mean square errors (RMSE). These results extend the uses for TRIP beyond interaction profiling, to probe amino acid composition and structure.

    more » « less
  4. Brillouin microscopy has recently emerged as a powerful tool for mechanical property measurements in biomedical sensing and imaging applications. Impulsive stimulated Brillouin scattering (ISBS) microscopy has been proposed for faster and more accurate measurements, which do not rely on stable narrow-band lasers and thermally-drifting etalon-based spectrometers. However, the spectral resolution of ISBS-based signal has not been significantly explored. In this report, the ISBS spectral profile has been investigated as a function of the pump beam’s spatial geometry, and novel methodologies have been developed for accurate spectral assessment. The ISBS linewidth was found to consistently decrease with increasing pump-beam diameter. These findings provide the means for improved spectral resolution measurements and pave the way to broader applications of ISBS microscopy.

    more » « less
  5. Artificial intelligence has recently been widely used in computational imaging. The deep neural network (DNN) improves the signal-to-noise ratio of the retrieved images, whose quality is otherwise corrupted due to the low sampling ratio or noisy environments. This work proposes a new computational imaging scheme based on the sequence transduction mechanism with the transformer network. The simulation database assists the network in achieving signal translation ability. The experimental single-pixel detector’s signal will be ‘translated’ into a 2D image in an end-to-end manner. High-quality images with no background noise can be retrieved at a sampling ratio as low as 2%. The illumination patterns can be either well-designed speckle patterns for sub-Nyquist imaging or random speckle patterns. Moreover, our method is robust to noise interference. This translation mechanism opens a new direction for DNN-assisted ghost imaging and can be used in various computational imaging scenarios.

    more » « less
  6. Non-destructive measurements of internal morphological structures in plant materials such as seeds are of high interest in agricultural research. The estimation of pericarp thickness is important to understand the grain quality and storage stability of seeds and can play a crucial role in improving crop yield. In this study, we demonstrate the applicability of fiber-based Bessel beam Fourier domain (FD) optical coherence microscopy (OCM) with a nearly constant high lateral resolution maintained at over ~400 µm for direct non-invasive measurement of the pericarp thickness of two different sorghum genotypes. Whereas measurements based on axial profiles need additional knowledge of the pericarp refractive index, en-face views allow for direct distance measurements. We directly determine pericarp thickness from lateral sections with a 3 µm resolution by taking the width of the signal corresponding to the pericarp at the 1/e threshold. These measurements enable differentiation of the two genotypes with 100% accuracy. We find that trading image resolution for acquisition speed and view size reduces the classification accuracy. Average pericarp thicknesses of 74 µm (thick phenotype) and 43 µm (thin phenotype) are obtained from high-resolution lateral sections, and are in good agreement with previously reported measurements of the same genotypes. Extracting the morphological features of plant seeds using Bessel beam FD-OCM is expected to provide valuable information to the food processing industry and plant breeding programs. 
    more » « less