skip to main content

Search for: All records

Creators/Authors contains: "Seabrook, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46–47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats. 
    more » « less
  2. Abstract

    In the past decade, thousands of previously unknown methane seeps have been identified on continental margins around the world. As we have come to appreciate methane seep habitats to be abundant components of marine ecosystems, we have also realized they are highly dynamic in nature. With a focus on discrete depth ranges across the Cascadia Margin, we work to further unravel the drivers of seep‐associated microbial community structure. We found highly heterogenous environments, with depth as a deterministic factor in community structure. This was associated with multiple variables that covaried with depth, including surface production, prevailing oxygen minimum zones (OMZs), and geologic and hydrographic context. Development of megafaunal seep communities appeared limited in shallow depth zones (~ 200 m). However, this effect did not extend to the structure or function of microbial communities. Siboglinid tubeworms were restricted to water depths > 1000 m, and we posit this deep distribution is driven by the prevailing OMZ limiting dispersal. Microbial community composition and distribution covaried most significantly with depth, but variables including oxygen concentration, habitat type, and organic matter, as well as iron and methane concentration, also explained the distribution of the microbial seep taxa. While members of the core seep microbiome were seen across sites, there was a high abundance of microbial taxa not previously considered within the seep microbiome as well. Our work highlights the multifaceted aspects that drive community composition beyond localized methane flux and depth, where environmental diversity adds to margin biodiversity in seep systems.

    more » « less
  3. Abstract

    Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates (‘dinoRNAVs’) to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types (‘aminotypes’), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.

    more » « less
  4. null (Ed.)