Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. Aims.This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M dwarf. Methods.We validated the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. Results.The newly discovered exoplanet TOI-4336 A b has a radius of 2.1 ± 0.1R⊕. Its host star is an M3.5-dwarf star with a mass of 0.33 ± 0.01M⊙and a radius of 0.33 ± 0.02R⊙, and is a member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet’s orbital period of 16.3 days places it at the inner edge of the habitable zone of its host star, which is the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST.more » « lessFree, publicly-accessible full text available July 1, 2025
-
We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195;V= 13.7 mag,J= 10.4 mag,R★= 0.512 ± 0.015R⊙,M★= 0.514 ± 0.012M⊙,d= 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10R⊕, 2.26 ± 0.10R⊕, and 1.92 ± 0.13R⊕and masses of 4.45 ± 0.65M⊕, 3.65 ± 0.97M⊕, and <5.2M⊕at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( ) and TOI-5301 b ( ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution.more » « lessFree, publicly-accessible full text available June 25, 2025
-
We report the discovery by the TESS mission of a super-Earth on a 4.8-days orbit around an inactive M4.5 dwarf (TOI-1680), validated by ground-based facilities. The host star is located 37.14 pc away, with a radius of 0.2100 ± 0.0064R⊙, mass of 0.1800 ± 0.0044M⊙, and an effective temperature of 3211 ±100 K. We validated and characterized the planet using TESS data, ground-based multi-wavelength photometry from TRAPPIST, SPECULOOS, and LCO, as well as high-resolution AO observations from Keck/NIRC2 andShane.Our analyses have determined the following parameters for the planet: a radius of 1.466−0.049+0.063R⊕and an equilibrium temperature of 404 ± 14 K, assuming no albedo and perfect heat redistribution. Assuming a mass based on mass-radius relations, this planet is a promising target for atmospheric characterization with theJames WebbSpace Telescope (JWST).more » « less
-
We present the discovery and validation of two TESS exoplanets orbiting nearby M dwarfs: TOI-2084 b, and TOI-4184b. We characterized the host stars by combining spectra fromShane/Kast andMagellan/FIRE, spectral energy distribution analysis, and stellar evolutionary models. In addition, we used Gemini-South/Zorro & -North/Alopeke high-resolution imaging, archival science images, and statistical validation packages to support the planetary interpretation. We performed a global analysis of multi-colour photometric data from TESS and ground-based facilities in order to derive the stellar and planetary physical parameters for each system. We find that TOI-2084 band TOI-4184 bare sub-Neptune-sized planets with radii ofRp= 2.47 ± 0.13R⊕andRp= 2.43 ± 0.21R⊕, respectively. TOI-2084 b completes an orbit around its host star every 6.08 days, has an equilibrium temperature ofTeq= 527 ± 8 K and an irradiation ofSp= 12.8 ± 0.8S⊕. Its host star is a dwarf of spectral M2.0 ± 0.5 at a distance of 114 pc with an effective temperature ofTeff= 3550 ± 50 K, and has a wide, co-moving M8 companion at a projected separation of 1400 au. TOI-4184 b orbits around an M5.0 ± 0.5 type dwarf star (Kmag= 11.87) each 4.9 days, and has an equilibrium temperature ofTeq= 412 ± 8 K and an irradiation ofSp= 4.8 ± 0.4S⊕. TOI-4184 is a metal poor star ([Fe/H] = −0.27 ± 0.09 dex) at a distance of 69 pc with an effective temperature ofTeff= 3225 ± 75 K. Both planets are located at the edge of the sub-Jovian desert in the radius-period plane. The combination of the small size and the large infrared brightness of their host stars make these new planets promising targets for future atmospheric exploration with JWST.more » « less
-
We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios.more » « less
-
null (Ed.)ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 R⊙, 1.15 M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $$11.6264 _{ - 0.0025 } ^ { + 0.0022 }$$ d and radius of $$3.41 _{ - 0.12 } ^ { + 0.14 }$$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $$5.83 _{ - 0.14 } ^ { + 0.14 }$$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $$11.56 _{ - 6.14 } ^ { + 6.58 }$$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology.more » « less
-
Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sin i = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10 5 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc −1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance.more » « less