skip to main content

Search for: All records

Creators/Authors contains: "Seager, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the discovery of TOI-1994b, a low-mass brown dwarf transiting a hot subgiant star on a moderately eccentric orbit. TOI-1994 has an effective temperature of7700410+720K, Vmagnitude of 10.51 mag and log(g) of3.9820.065+0.067. The brown dwarf has a mass of22.12.5+2.6MJ, a period of 4.034 days, an eccentricity of0.3410.059+0.054, and a radius of1.2200.071+0.082RJ. TOI-1994b is more eccentric than other transiting brown dwarfs with similar masses and periods. The population of low-mass brown dwarfs may have properties similar to planetary systems if they were formed in the same way, but the short orbital period and high eccentricity of TOI-1994b may contrast this theory. An evolved host provides a valuable opportunity to understand the influence stellar evolution has on the substellar companion’s fundamental properties. With precise age, mass, and radius, the global analysis and characterization of TOI-1994b augments the small number of transiting brown dwarfs and allows the testing of substellar evolution models.

    more » « less
  2. Abstract

    While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject tosinidegeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf withM=723+3MJup=0.0690.003+0.003Morbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star withM=932+2MJup=0.0880.002+0.002Morbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star withM=827+7MJup=0.0790.007+0.007Mtransiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.

    more » « less
  3. Abstract

    We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (Teff= 5996 ± 110 K,log(g)=4.2±0.1,V= 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of2.770.07+0.15R. We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of14.53.14+3.15M, and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet.

    more » « less

    We report the discovery of two mini-Neptunes in near 2:1 resonance orbits (P = 7.610303 d for HIP 113103 b and P  = 14.245651 d for HIP 113103 c) around the adolescent K-star HIP 113103 (TIC 121490076). The planet system was first identified from the TESS mission, and was confirmed via additional photometric and spectroscopic observations, including a ∼17.5 h observation for the transits of both planets using ESA CHEOPS. We place ≤4.5 min and ≤2.5 min limits on the absence of transit timing variations over the 3 yr photometric baseline, allowing further constraints on the orbital eccentricities of the system beyond that available from the photometric transit duration alone. With a planetary radius of Rp  =  $1.829_{-0.067}^{+0.096}$ R⊕, HIP 113103 b resides within the radius gap, and this might provide invaluable information on the formation disparities between super-Earths and mini-Neptunes. Given the larger radius Rp  = $2.40_{-0.08}^{+0.10}$ R⊕ for HIP 113103 c, and close proximity of both planets to HIP 113103, it is likely that HIP 113103 b might have lost (or is still losing) its primordial atmosphere. We therefore present simulated atmospheric transmission spectra of both planets using JWST, HST, and Twinkle. It demonstrates a potential metallicity difference (due to differences in their evolution) would be a challenge to detect if the atmospheres are in chemical equilibrium. As one of the brightest multi sub-Neptune planet systems suitable for atmosphere follow up, HIP 113103 b and HIP 113103 c could provide insight on planetary evolution for the sub-Neptune K-star population.

    more » « less
  5. Abstract

    We present the Distant Giants Survey, a three-year radial velocity campaign to measure P(DG∣CS), the conditional occurrence of distant giant planets (DG;Mp∼ 0.3–13MJ,P> 1 yr) in systems hosting a close-in small planet (CS;Rp< 10R). For the past two years, we have monitored 47 Sun-like stars hosting small transiting planets detected by TESS. We present the selection criteria used to assemble our sample and report the discovery of two distant giant planets, TOI-1669 b and TOI-1694 c. For TOI-1669 b we find thatMsini=0.573±0.074MJ,P= 502 ± 16 days, ande< 0.27, while for TOI-1694 c,Msini=1.05±0.05MJ,P= 389.2 ± 3.9 days, ande= 0.18 ± 0.05. We also confirmed the 3.8 days transiting planet TOI-1694 b by measuring a true mass ofM= 26.1 ± 2.2M. At the end of the Distant Giants Survey, we will incorporate TOI-1669 b and TOI-1694 c into our calculation of P(DG∣CS), a crucial statistic for understanding the relationship between outer giants and small inner companions.

    more » « less
  6. We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios. 
    more » « less
  7. null (Ed.)
  8. Abstract We report the discovery of HIP-97166b (TOI-1255b), a transiting sub-Neptune on a 10.3 day orbit around a K0 dwarf 68 pc from Earth. This planet was identified in a systematic search of TESS Objects of Interest for planets with eccentric orbits, based on a mismatch between the observed transit duration and the expected duration for a circular orbit. We confirmed the planetary nature of HIP-97166b with ground-based radial-velocity measurements and measured a mass of M b = 20 ± 2 M ⊕ along with a radius of R b = 2.7 ± 0.1 R ⊕ from photometry. We detected an additional nontransiting planetary companion with M c sin i = 10 ± 2 M ⊕ on a 16.8 day orbit. While the short transit duration of the inner planet initially suggested a high eccentricity, a joint RV-photometry analysis revealed a high impact parameter b = 0.84 ± 0.03 and a moderate eccentricity. Modeling the dynamics with the condition that the system remain stable over >10 5 orbits yielded eccentricity constraints e b = 0.16 ± 0.03 and e c < 0.25. The eccentricity we find for planet b is above average for the small population of sub-Neptunes with well-measured eccentricities. We explored the plausible formation pathways of this system, proposing an early instability and merger event to explain the high density of the inner planet at 5.3 ± 0.9 g cc −1 as well as its moderate eccentricity and proximity to a 5:3 mean-motion resonance. 
    more » « less
  9. null (Ed.)
    ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V  = 8.85 mag) early G dwarf (1.43  R⊙, 1.15  M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $11.6264 _{ - 0.0025 } ^ { + 0.0022 }$ d and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology. 
    more » « less