The discovery over the last several decades of low- and moderate-luminosity active galactic nuclei (AGNs) in disk-dominated galaxies—which show no “classical” bulges—suggests that secular mechanisms represent an important growth pathway for supermassive black holes in these systems. We present new follow-up NuSTAR observations of the optically elusive AGNs in two bulgeless galaxies, NGC 4178 and J0851+3926. Galaxy NGC 4178 was originally reported as hosting an AGN based on the detection of [Ne
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract v ] mid-infrared emission detected by Spitzer, and based on Chandra X-ray imaging, it has since been argued to host either a heavily obscured AGN or a supernova remnant. Galaxy J0851+3926 was originally identified as an AGN based on its Wide-Field Infrared Survey Explorer mid-IR colors, and follow-up near-infrared spectroscopy previously revealed a hidden broad-line region, offering compelling evidence for an optically elusive AGN. Neither AGN is detected within the new NuSTAR imaging, and we derive upper limits on the hard X-ray 10–24 keV fluxes of <7.41 × 10−14and <9.40 × 10−14erg cm−2s−1for the AGNs in NGC 4178 and J0851+3926, respectively. If these nondetections are due to large absorbing columns along the line of sight, the nondetections in NGC 4178 and J0851+3926 could be explained with column densities of log(N H/cm2) > 24.2 and 24.1, respectively. The nature of the nuclear activity in NGC 4178 remains inconclusive; it is plausible that the [Nev ] traces a period of higher activity in the past, but that the AGN is relatively quiescent now. The nondetection in J0851+3926 and multiwavelength properties are consistent with the AGN being heavily obscured. -
Abstract Local low-metallicity dwarf galaxies are relics of the early universe and are thought to hold clues into the origins of supermassive black holes. While recent studies are uncovering a growing population of active galactic nuclei (AGNs) in dwarf galaxies, the vast majority reside in galaxies with solar or supersolar metallicities and stellar masses comparable to that of the LMC. Using Multi-Unit Spectroscopic Explorer (MUSE) and Very Large Telescope observations, we report the detection of [Fe
x ]λ 6374 coronal line emission and a broad Hα line in the nucleus of SDSS J094401.87−003832.1, a nearby (z = 0.0049) metal-poor dwarf galaxy almost 500 times less massive than the LMC. Unlike the emission from the lower-ionization nebular lines, the [Fex ]λ 6374 emission is compact and centered on the brightest nuclear source, with a spatial extent of ≈100 pc, similar to that seen in well-known AGNs. The [Fex ] luminosity is ≈1037erg s−1, within the range seen in previously identified AGNs in the dwarf-galaxy population. The [Fex ] emission has persisted over the roughly 19 yr time period between the SDSS and MUSE observations, ruling out supernovae as the origin for the emission. The FWHM of the broad component of the Hα line is 446 ± 17 km s−1and its luminosity is ≈1.5 × 1038erg s−1, corresponding to a black hole mass of ≈ 3150M ⊙, in line with its stellar mass if virial mass relations and black hole–galaxy scaling relations apply in this mass regime. These observations, together with previously reported multiwavelength observations, can most plausibly be explained by the presence of an accreting intermediate-mass black hole in a primordial galaxy analog. -
ABSTRACT Powerful outflows are thought to play a critical role in galaxy evolution and black hole growth. We present the first large-scale systematic study of ionized outflows in paired galaxies and post-mergers compared to a robust control sample of isolated galaxies. We isolate the impact of the merger environment to determine if outflow properties depend on merger stage. Our sample contains ∼4000 paired galaxies and ∼250 post-mergers in the local universe (0.02 ≤ z ≤ 0.2) from the Sloan Digital Sky Survey Data Release 7 (SDSS DR 7) matched in stellar mass, redshift, local density of galaxies, and [O iii] λ5007 luminosity to a control sample of isolated galaxies. By fitting the [O iii] λ5007 line, we find ionized outflows in ∼15 per cent of our entire sample. Outflows are much rarer in star-forming galaxies compared to active galactic nuclei (AGNs), and outflow incidence and velocity increase with [O iii] λ5007 luminosity. Outflow incidence is significantly elevated in the optical + mid-infrared selected AGN compared to purely optical AGN; over 60 per cent show outflows at the highest luminosities ($L_{\mathrm{[OIII]~\lambda 5007}}\, \gtrsim$ 1042 erg s−1), suggesting mid-infrared AGN selection favours galaxies with powerful outflows, at least for higher [O iii] λ5007 luminosities. However, we find no statistically significant difference in outflow incidence, velocity, and luminosity in mergers compared to isolated galaxies, and there is no dependence on merger stage. Therefore, while interactions are predicted to drive gas inflows and subsequently trigger nuclear star formation and accretion activity, when the power source of the outflow is controlled for, the merging environment has no further impact on the large-scale ionized outflows as traced by [O iii] λ5007.
-
Abstract Galaxy mergers are predicted to trigger accretion onto the central supermassive black holes, with the highest rates occurring during final coalescence. Previously, we have shown elevated rates of both optical and mid-IR selected active galactic nuclei (AGN) in post-mergers, but to date the prevalence of X-ray AGN has not been examined in the same systematic way. We present XMM-Newton data of 43 post-merger galaxies selected from the Sloan Digital Sky Survey along with 430 non-interacting control galaxies matched in stellar mass, redshift, and environment in order to test for an excess of hard X-ray (2–10 keV) emission in post-mergers attributable to triggered AGN. We find 2 X-ray detections in the post-mergers ($4.7^{+9.3}_{-3.8}\%$) and 9 in the controls ($2.1^{+1.5}_{-1.0}\%$), an excess of $2.22^{+4.44}_{-2.22}$, where the confidence intervals are 90%. While we therefore do not find statistically significant evidence for an X-ray AGN excess in post-mergers (p = 0.26), we find a factor of ∼17 excess of mid-IR AGN in our sample, consistent with past work and inconsistent with the observed X-ray excess (p = 2.7 × 10−4). Dominant, luminous AGN are therefore more frequent in post-mergers, and the lack of a comparable excess of 2–10 keV X-ray AGN suggests that AGN in post-mergers are more likely to be heavily obscured. Our results are consistent with the post-merger stage being characterised by enhanced AGN fueling, heavy AGN obscuration, and more intrinsically luminous AGN, in line with theoretical predictions.more » « less
-
ABSTRACT We present a multiwavelength analysis of 28 of the most luminous low-redshift narrow-line, ultra-hard X-ray-selected active galactic nuclei (AGN) drawn from the 70-month Swift/BAT all-sky survey, with bolometric luminosities of $\log (L_{\rm bol} /{\rm erg\, s}^{-1}) \gtrsim 45.25$. The broad goal of our study is to determine whether these objects have any distinctive properties, potentially setting them aside from lower luminosity obscured AGN in the local Universe. Our analysis relies on the first data release of the BAT AGN Spectroscopic Survey (BASS/DR1) and on dedicated observations with the VLT, Palomar, and Keck observatories. We find that the vast majority of our sources agree with commonly used AGN selection criteria which are based on emission line ratios and on mid-infrared colours. Our AGN are pre-dominantly hosted in massive galaxies (9.8 ≲ log (M*/M⊙) ≲ 11.7); based on visual inspection of archival optical images, they appear to be mostly ellipticals. Otherwise, they do not have distinctive properties. Their radio luminosities, determined from publicly available survey data, show a large spread of almost four orders of magnitude – much broader than what is found for lower X-ray luminosity obscured AGN in BASS. Moreover, our sample shows no preferred combination of black hole masses (MBH) and/or Eddington ratio (λEdd), covering 7.5 ≲ log (MBH/M⊙) ≲ 10.3 and 0.01 ≲ λEdd ≲ 1. Based on the distribution of our sources in the λEdd−NH plane, we conclude that our sample is consistent with a scenario where the amount of obscuring material along the line of sight is determined by radiation pressure exerted by the AGN on the dusty circumnuclear gas.more » « less