Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The high-luminosity upgrade of the LHC brings unprecedented requirements for real-time and precision bunch-by-bunch online luminosity measurement and beam-induced background monitoring. A key component of the CMS Beam Radiation, Instrumentation and Luminosity system is a stand-alone luminometer, the Fast Beam Condition Monitor (FBCM), which is fully independent from the CMS central trigger and data acquisition services and able to operate at all times with a triggerless readout. FBCM utilizes a dedicated front-end application-specific integrated circuit (ASIC) to amplify the signals from CO2-cooled silicon-pad sensors with a timing resolution of a few nanoseconds, which enables the measurement of the beam-induced background. FBCM uses a modular design with two half-disks of twelve modules at each end of CMS, with four service modules placed close to the outer edge to reduce radiation-induced aging. The electronics system design adapts several components from the CMS Tracker for power, control and read-out functionalities. The dedicated FBCM23 ASIC contains six channels and adjustable shaping time to optimize the noise with regards to sensor leakage current. Each ASIC channel outputs a single binary high-speed asynchronous signal carrying time-of-arrival and time-over-threshold information. The chip output signal is digitized,encoded, and sent via a radiation-hard gigabit transceiverand an optical link to the back-end electronics for analysis. This paper reports on the updated design of the FBCM detector and the ongoing testing program.more » « less
-
Abstract The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022.more » « less
-
Abstract Measurements of Higgs boson production, where the Higgs boson decays into a pair of$$\uptau $$ leptons, are presented, using a sample of proton-proton collisions collected with the CMS experiment at a center-of-mass energy of Equation missing<#comment/>, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ . Three analyses are presented. Two are targeting Higgs boson production via gluon fusion and vector boson fusion: a neural network based analysis and an analysis based on an event categorization optimized on the ratio of signal over background events. These are complemented by an analysis targeting vector boson associated Higgs boson production. Results are presented in the form of signal strengths relative to the standard model predictions and products of cross sections and branching fraction to$$\uptau $$ leptons, in up to 16 different kinematic regions. For the simultaneous measurements of the neural network based analysis and the analysis targeting vector boson associated Higgs boson production signal strengths are found to be$$0.82\pm 0.11$$ for inclusive Higgs boson production,$$0.67\pm 0.19$$ ($$0.81\pm 0.17$$ ) for the production mainly via gluon fusion (vector boson fusion), and$$1.79\pm 0.45$$ for vector boson associated Higgs boson production.more » « less
-
A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.more » « less
An official website of the United States government
