Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2flux across 181 ecosystems. We find an increase in the annual CO2sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2losses have substantially impacted the CO2balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming.
Free, publicly-accessible full text available August 1, 2025 -
The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N, P, and Ca acquisition and limitation of forest productivity through a series of nutrient manipulations in northern hardwood forests. This data set includes litterfall chemistry and mass for litter collected approximately weekly through the fall litterfall season, either composited over the entire fall season or selected from individual collection times, pre-treatment (2009), and post-treatment (2012, 2014, 2016, 2018). Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
We are conducting nutrient manipulations in three study sites in the White Mountain National Forest in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook. We monitored foliar chemistry in 12 of our stands (excluding C3) pre-treatment (2008-2010) and post-treatment (2014-2016). In general, we found that foliar N concentrations were higher with N addition and foliar P concentrations were higher with P addition. More interestingly, P addition reduced foliar N concentrations and N addition reduced foliar P concentrations. Some interactive effects were observed (i.e. NxP, Species x N, Species x P, Species x N x P). This dataset contains pre- and post- treatment foliar chemistry data, and data from the analysis of quality control standard samples. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.more » « less
-
null (Ed.)Long-term streamflow datasets inevitably include gaps, which must be filled to allow estimates of runoff and ultimately catchment water budgets. Uncertainty introduced by filling gaps in discharge records is rarely, if ever, reported. We characterized the uncertainty due to streamflow gaps in a reference watershed at the Hubbard Brook Experimental Forest (HBEF) from 1996 to 2009 by simulating artificial gaps of varying duration and flow rate, with the objective of quantifying their contribution to uncertainty in annual streamflow. Gaps were filled using an ensemble of regressions relating discharge from nearby streams, and the predicted flow was compared to the actual flow. Differences between the predicted and actual runoff increased with both gap length and flow rate, averaging 2.8% of the runoff during the gap. At the HBEF, the sum of gaps averaged 22 days per year, with the lowest and highest annual uncertainties due to gaps ranging from 1.5 mm (95% confidence interval surrounding mean runoff) to 21.1 mm. As a percentage of annual runoff, uncertainty due to gap filling ranged from 0.2–2.1%, depending on the year. Uncertainty in annual runoff due to gaps was small at the HBEF, where infilling models are based on multiple similar catchments in close proximity to the catchment of interest. The method demonstrated here can be used to quantify uncertainty due to gaps in any long-term streamflow data set, regardless of the gap-filling model applied.more » « less
-
Abstract Associations between soil minerals and microbially derived organic matter (often referred to as mineral‐associated organic matter or MAOM) form a large pool of slowly cycling carbon (C). The rhizosphere, soil immediately adjacent to roots, is thought to control the spatial extent of MAOM formation because it is the dominant entry point of new C inputs to soil. However, emphasis on the rhizosphere implicitly assumes that microbial redistribution of C into bulk (non‐rhizosphere) soils is minimal. We question this assumption, arguing that because of extensive fungal exploration and rapid hyphal turnover, fungal redistribution of soil C from the rhizosphere to bulk soil minerals is common, and encourages MAOM formation. First, we summarize published estimates of fungal hyphal length density and turnover rates and demonstrate that fungal C inputs are high throughout the rhizosphere–bulk soil continuum. Second, because colonization of hyphal surfaces is a common dispersal mechanism for soil bacteria, we argue that hyphal exploration allows for the non‐random colonization of mineral surfaces by hyphae‐associated taxa. Third, these bacterial communities and their fungal hosts determine the chemical form of organic matter deposited on colonized mineral surfaces. Collectively, our analysis demonstrates that omission of the hyphosphere from conceptual models of soil C flow overlooks key mechanisms for MAOM formation in bulk soils. Moving forward, there is a clear need for spatially explicit, quantitative research characterizing the environmental drivers of hyphal exploration and hyphosphere community composition across systems, as these are important controls over the rate and organic chemistry of C deposited on minerals.