skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seidel, Claus_A_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Single-molecule Förster Resonance Energy Transfer (smFRET) experiments are ideally suited to resolve the structural dynamics of biomolecules. A significant challenge to date is capturing and quantifying the exchange between multiple conformational states, mainly when these dynamics occur on the sub-millisecond timescale. Many methods for quantitative analysis are challenged if more than two states are involved, and the appropriate choice of the number of states in the kinetic network is difficult. An additional complication arises if dynamically active molecules coexist with pseudo-static molecules in similar conformational states with undistinguishable Förster Resonance Energy Transfer (FRET) efficiencies. To address these problems, we developed a quantitative integrative analysis framework that combines the information from FRET-lines that relate average fluorescence lifetimes and intensities in two-dimensional burst frequency histograms, fluorescence decays obtained by time-correlated single-photon-counting, photon distribution analysis of the intensities, and fluorescence correlation spectroscopy. Individually, these methodologies provide ambiguous results for the characterization of dynamics in complex kinetic networks. However, the global analysis approach enables accurate determination of the number of states, their kinetic connectivity, the transition rate constants, and species fractions. To challenge the potential of smFRET experiments for studying multi-state kinetic networks, we apply our integrative framework using a set of synthetic data for three-state systems with different kinetic connectivity and exchange rates. Our methodology paves the way toward an integrated analysis of multiparameter smFRET experiments that spans all dimensions of the experimental data. Finally, we propose a workflow for the analysis and show examples that demonstrate the usefulness of this toolkit for dynamic structural biology. 
    more » « less