skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seidler, Gerald_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spherically‐bent crystal analyzers (SBCAs) see considerable use in very high‐resolution hard X‐ray wavelength dispersive X‐ray fluorescence spectroscopy, often called X‐ray emission spectroscopy (XES). While Si and Ge are the most frequently used diffractive components of SBCAs, we consider here the somewhat classical choice of muscovite mica as the dispersing element. We find that the various harmonics of a highest‐quality mica‐based SBCA show ~5–~40% of the integral reflectivity per unit solid angle of a typical Si or Ge SBCA in the hard X‐ray range, and that the mica SBCA have comparable energy resolution to the traditional SBCAs. Interestingly, the choice of mica comes with a practical benefit: the primary (0,0,2) reflection has sufficiently strong harmonics that are fairly tightly spaced in energy so that they span the complete energy range from ~4 to ~11 keV when used at convenient Bragg angles in a Rowland circle spectrometer. Hence, a single mica SBCA can be used for every K‐shell emission line of three dimensional transition metals and every L‐shell emission line of the lanthanide elements simply by selecting the correct mica (0,0,2) harmonic with a final energy‐dispersive solid state detector. The loss in efficiency is counteracted by an operational efficiency, i.e., the “universal” application of a single analyzer over a very large range of elements. This performance suggests future application of mica SBCAs in both laboratory‐based XES and synchrotron‐based photon‐in, photon‐out spectroscopies in the hard X‐ray range. 
    more » « less
  2. Abstract A number of technologies would benefit from developing inorganic compounds and materials with specific electronic and magnetic exchange properties. Unfortunately, designing compounds with these properties is difficult because metal⋅⋅⋅metal coupling schemes are hard to predict and control. Fully characterizing communication between metals in existing compounds that exhibit interesting properties could provide valuable insight and advance those predictive capabilities. One such class of molecules are the series of Lindqvist iron‐functionalized and hexavanadium polyoxovanadate‐alkoxide clusters, which we characterized here using V K‐edge X‐ray absorption spectroscopy. Substantial changes in the pre‐edge peak intensities were observed that tracked with the V 3d‐electron count. The data also suggested substantial delocalization between the vanadium cations. Meanwhile, the FeIIIcations were electronically isolated from the polyoxovanadate core. 
    more » « less