skip to main content


Search for: All records

Creators/Authors contains: "Seitzinger, Claire L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Over 8 billion tons of plastic have been produced to date, and a 100% reclamation recycling strategy is not foreseeable. This review summarizes how the mechanochemistry of polymers may contribute to a sustainable polymer future by controlling the degradation not only of de novo developed designer polymers but also of plastics in existing waste streams. The historical development of polymer mechanochemistry is presented while highlighting current examples of mechanochemically induced polymer degradation. Additionally, theoretical and computational frameworks are discussed that may lead to the discovery and better understanding of new mechanochemical reactions in the future. This review takes into account technical and engineering perspectives converging the fields of trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. Therefore, a unique perspective of multiple communities is presented, highlighting the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical degradation approach for a circular economy.

     
    more » « less
  2. Polymer/ionic liquid systems are being increasingly explored, yet those exhibiting lower critical solution temperature (LCST) phase behavior remain poorly understood. Poly(benzyl methacrylate) in certain ionic liquids constitute unusual LCST systems, in that the second virial coefficient (A2) in dilute solutions has recently been shown to be positive, indicative of good solvent behavior, even above phase separation temperatures, where A2 < 0 is expected. In this work, we describe the LCST phase behavior of poly(benzyl methacrylate) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide for three different molecular weights (32, 63, and 76 kg/mol) in concentrated solutions (5–40% by weight). Turbidimetry measurements reveal a strong concentration dependence to the phase boundaries, yet the molecular weight is shown to have no influence. The critical compositions of these systems are not accessed, and must therefore lie above 40 wt% polymer, far from the values (ca. 10%) anticipated by Flory-Huggins theory. The proximity of the experimental cloud point to the coexistence curve (binodal) and the thermo-reversibility of the phase transitions, are also confirmed at various heating and cooling rates. 
    more » « less