skip to main content

Search for: All records

Creators/Authors contains: "Sekhwal, Manoj K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Severe and frequent heat and drought events challenge the survival and development of long-generation trees. In this study, we investigated the genomic basis of heat tolerance, water use efficiency, and growth by performing genome-wide association studies in coastal Douglas-fir (Pseudotsuga menziesii) and intervarietal (menziesii x glauca) hybrid seedlings. GWAS results identified 32 candidate genes involved in primary and secondary metabolism, abiotic stress and signaling, among other functions. Water use efficiency (inferred from carbon isotope discrimination), photosynthetic capacity (inferred from %N), height, and heat tolerance (inferred from electrolyte leakage in a heat stress experiment) were significantly different among Douglas-fir families and varieties. High elevation seed sources had increased water use efficiency, which could be a result of higher photosynthetic capacity. Similarly, families with greater heat tolerance also had higher water use efficiency and slower growth, suggesting a conservative growth strategy. Intervarietal hybrids showed increased heat tolerance (lower electrolyte leakage at 50 oC and 55 oC) and higher water use efficiency compared to coastal families, suggesting hybridization might be a source of pre-adapted alleles to warming climates and should be considered for large-scale reforestation projects under increasingly arid conditions. 
    more » « less

    Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome‐wide association study methods were used to identify candidate genes in two iconic and ecosystem‐dominating species of the western USA, coast redwood and giant sequoia, using 10 drought‐related physiological and anatomical traits and genome‐wide sequence‐capture single nucleotide polymorphisms. Population‐level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long‐generation conifers and helps guide current and future conservation efforts in the species.

    more » « less
  3. Abstract

    Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.

    more » « less