skip to main content


Search for: All records

Creators/Authors contains: "Selesnick, R. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electrons in Earth's outer radiation belt are highly dynamic, with fluxes changing by up to orders of magnitude. The penetration of electrons from the outer belt to the inner belt is one such change observed during geomagnetic storms and was previously observed in electrons up to 1 MeV for some strong storms observed by the Van Allen Probes. We analyze pulse height analysis data from the Relativistic Electric and Proton Telescope (REPT) on the Van Allen Probes to produce electron flux measurements with lower minimum energy and significantly improved resolution compared to the standard REPT data and show that electron penetrations into the inner belt (L ≤ 2) extend to at least 1.3 MeV and penetrations into the slot region (2 < L < 2.8) extend to at least 1.5 MeV during certain geomagnetic storms. We also demonstrate that these penetrations are associated with butterfly pitch angle distributions from 1 to 1.3 MeV.

     
    more » « less
  2. Abstract

    Angular response functions are derived for four electron channels and six proton channels of the SEM‐2 MEPED particle telescopes on the POES and MetOp satellites from Geant4 simulations previously used to derive the energy response. They are combined with model electron distributions in energy and pitch angle to show that the vertical 0° telescope, intended to measure precipitating electrons, instead usually measures trapped or quasi‐trapped electrons, except during times of enhanced pitch angle diffusion. A simplified dynamical model of the radiation belt electron distribution near the loss cone, as a function of longitude, energy, and pitch angle, that accounts for pitch angle diffusion, azimuthal drift, and atmospheric backscatter is fit to sample MEPED electron data atL = 4during times of differing diffusion rates. It is then used to compute precipitating electron flux, as function of energy and longitude, that is lower than would be estimated by assuming that the 0° telescope always measures precipitating electrons.

     
    more » « less