- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Monsour, Charlotte G. (3)
-
Selke, Matthias (3)
-
Tafolla‐Aguirre, Bliss J. (2)
-
Arevalo, Gary E. (1)
-
Cagan, David A. (1)
-
Decosto, Cassandra M. (1)
-
Garcia, Arman C. (1)
-
Lakshmanan, Nidhi (1)
-
McCurdy, Alison (1)
-
Morales, Luis A. (1)
-
Sabio, Rhemrose B. (1)
-
Tadle, Abegail C. (1)
-
Yoon, Jin Hyeok (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Monsour, Charlotte G. ; Decosto, Cassandra M. ; Tafolla‐Aguirre, Bliss J. ; Morales, Luis A. ; Selke, Matthias ( , Photochemistry and Photobiology)
Abstract Metal thiolate complexes can act as photosensitizers for the generation of singlet oxygen, quenchers of singlet oxygen, and they may undergo chemical reactions with singlet oxygen leading to oxidized thiolate ligands. This review covers all of the chemical reactions of thiolate ligands with singlet oxygen (through early 2021). Since some of these reactions are self‐sensitized photooxidations, singlet oxygen generation by metal complexes is also discussed. Mechanistic features such as the effects of protic vs. aprotic conditions are presented and compared with the comparatively well‐understood photooxidation of organic sulfides. In general, the total rate of singlet oxygen removal correlates with the nucleophilicity of the thiolate ligand which in turn can be influenced by the metal. Some interesting patterns of reactivity have been noted as a result of this survey: Metal thiolate complexes bearing arylthiolate ligands appear to exclusively produce sulfinate (metal‐bound sulfone) products upon reaction with singlet oxygen. In contrast, metal thiolate complexes bearing alkylthiolate ligands may produce sulfinate and/or sulfenate (metal‐bound sulfoxide) products. Several mechanistic pathways have been proposed for these reactions, but the exact nature of any intermediates remains unknown at this time.
-
Arevalo, Gary E. ; Cagan, David A. ; Monsour, Charlotte G. ; Garcia, Arman C. ; McCurdy, Alison ; Selke, Matthias ( , Photochemistry and Photobiology)
Abstract We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen (
k T) for the model system, that is, (k T = 2.4 ± 0.2) × 108m −1 s−1without sodium cationvs (k T = 6.9 ± 0.9) × 107m −1 s−1upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.