Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments. Despite a proliferation of proposed algorithms for this task, assessing their performance both theoretically and empirically is still very challenging. Distributional matching algorithms such as (Conditional) Domain Adversarial Networks [12, 28] are popular and enjoy empirical success, but they lack formal guarantees. Other approaches such as Invariant Risk Minimization (IRM) require a prohibitively large number of training environments—linear in the dimension of the spurious feature space ds—even on simple data models like the one proposed by Rosenfeld et al. [37]. Under a variant of this model, we show that ERM and IRM can fail to fnd the optimal invariant predictor with o(ds) environments. We then present an iterative feature matching algorithm that is guaranteed with high probability to find the optimal invariant predictor after seeing only O(log ds) environments. Our results provide the first theoretical justification for distribution-matching algorithms widely used in practice under a concrete nontrivial data model.more » « less
-
Abstract Given a graph of degree over vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth , we develop a local message passing algorithm whose complexity is , and that achieves near optimal cut values among all ‐local algorithms. Focusing on max‐cut, the algorithm constructs a cut of value , where is the value of the Parisi formula from spin glass theory, and (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, that is, graphs whose girth becomes after removing a small fraction of vertices. Earlier work established that, for random ‐regular graphs, the typical max‐cut value is . Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max‐cut, and nearly maximum min‐bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near‐Ramanujan property of random regular graphs.more » « less
-
null (Ed.)Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $$(1+\epsilon)$$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $$c$$, find a smaller graph, which we call \emph{connectivity-$$c$$ mimicking network}, which preserves connectivity among $$k$$ terminals exactly up to the value of $$c$$. We show that connectivity-$$c$$ mimicking networks of size $O(kc^4)$ exist and can be found in time $$m(c\log n)^{O(c)}$$. We also give a separate algorithm that constructs such graphs of size $$k \cdot O(c)^{2c}$$ in time $$mc^{O(c)}\log^{O(1)}n$$. These results lead to the first offline data structures for answering fully dynamic $$c$$-edge-connectivity queries for $$c \ge 4$$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs.more » « less
An official website of the United States government

Full Text Available