skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sen, Priyangshu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 9, 2025
  2. Abstract

    One of the key distinctions between legacy low-frequency wireless systems and future THz wireless transmissions is that THz links will require high directionality, to overcome the large free-space path loss. Because of this directionality, optical phenomena become increasingly important as design considerations. A key example lies in the strong dependence of angular radiation patterns on the transmission frequency, which is manifested in many different situations including common diffraction patterns and the emission from leaky-wave apertures. As a result of this effect, the spectral bandwidth at a receiver is nonlinearly dependent on the receiver’s angular position and distance from the transmitter. In this work, we explore the implications of this type of effect by incorporating either a diffraction grating or a leaky wave antenna into a communication link. These general considerations will have significant implications for the robustness of data transmissions at high frequencies.

     
    more » « less
  3. Abstract

    Sixth-generation wireless networks will aggregate higher-than-ever mobile traffic into ultra-high capacity backhaul links, which could be deployed on the largely untapped spectrum above 100 GHz. Current regulations however prevent the allocation of large contiguous bands for communications at these frequencies, since several narrow bands are reserved to protect passive sensing services. These include radio astronomy and Earth exploration satellites using sensors that suffer from harmful interference from active transmitters. Here we show that active and passive spectrum sharing above 100 GHz is feasible by introducing and experimentally evaluating a real-time, dual-band backhaul prototype that tracks the presence of passive users (in this case the NASA satellite Aura) and avoids interference by automatically switching bands (123.5–140 GHz and 210–225 GHz). Our system enables wide-band transmissions in the above-100-GHz spectrum, while avoiding harmful interference to satellite systems, paving the way for innovative spectrum policy and technologies in these crucial bands.

     
    more » « less