- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Inamdar, Shreeram (2)
-
Joshi, Bisesh (2)
-
Kan, Jinjun (2)
-
Peipoch, Marc (2)
-
Sena, Matthew (2)
-
Ajami, Hoori (1)
-
Billings, Sharon A (1)
-
Cao, Xiaoyang (1)
-
Dwivedi, Dipankar (1)
-
Flores, Alejandro N (1)
-
Galella, Joseph G (1)
-
Gold, Arthur (1)
-
Gold, Arthur J (1)
-
Groffman, Peter M (1)
-
Groffman, Peter M. (1)
-
Hirmas, Daniel R (1)
-
Jarecke, Karla M (1)
-
Li, Bonan (1)
-
Li, Li (1)
-
Nippert, Jesse B (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hirmas, Daniel R; Ajami, Hoori; Sena, Matthew G; Zhang, Xi; Cao, Xiaoyang; Li, Bonan; Jarecke, Karla M; Billings, Sharon A; Pachon, Julio C; Li, Li; et al (, Water Resources Research)Abstract The size and spatial distribution of soil structural macropores impact the infiltration, percolation, and retention of soil water. Despite the assumption often made in hydrologic flux equations that these macropores are rigid, highly structured soils can respond quickly to moisture variability‐induced shrink‐swell processes altering the size distribution of these pores. In this study, we use a high‐resolution (180 m) laser imaging technique to measure the average width of interpedal, planar macropores from intact cross sections and relate it to matrix water content. We also develop an expression for unsaturated hydraulic conductivity that accounts for dynamic macropore geometries and propose a method for partitioning sensor soil water content data into matrix and macropore water contents. The model was applied to a soil in northeastern Kansas where soil monoliths had been imaged to quantify macropore properties and continuous water content data were collected at three depths. Model‐predicted macropore width showed significant sensitivity to matrix water content resulting in changes of 15%–50% of maximum width over the 15‐month period of record. Transient saturated hydraulic conductivity predicted from the model compared favorably to a previously developed model accounting for moisture‐induced changes to structural unit porosity. Following periods of low soil moisture, infiltrating meteoric water filled highly conductive macropores increasing by several orders of magnitude which subsequently decreased as water was absorbed into the matrix and macropores drained. This model offers a means by which to combine measurable morphological data with soil moisture sensors to monitor dynamic hydraulic properties of soils susceptible to shrink‐swell processes.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Inamdar, Shreeram; Peipoch, Marc; Sena, Matthew; Joshi, Bisesh; Rahman, Md. Moklesur; Kan, Jinjun; Peck, Erin K.; Gold, Arthur; Trammell, Tara L. E.; Groffman, Peter M. (, Geophysical Research Letters)Abstract Groundwater nitrate‐N isotopes (δ15N‐) have been used to infer the effects of natural and anthropogenic change on N cycle processes in the environment. Here we report unexpected changes in groundwater δ15N‐ for riparian zones affected by relict milldams and road salt salinization. Contrary to natural, undammed conditions, groundwater δ15N‐ values declined from the upland edge through the riparian zone and were lowest near the stream. Groundwater δ15N‐ values increased for low electron donor (dissolved organic carbon) to acceptor ratios but decreased beyond a change point in ratios. Groundwater δ15N‐ values were particularly low for the riparian milldam site subjected to road‐salt salinization. We attributed these N isotopic trends to suppression of denitrification, occurrence of dissimilatory nitrate reduction to ammonium (DNRA), and/or effects of road salt salinization. Groundwater δ15N‐ can provide valuable insights into process mechanisms and can serve as “imprints” of anthropogenic activities and legacies.more » « less
An official website of the United States government
