- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Senemmar, Soroush (2)
-
Yan, Jingyi (2)
-
Zhang, Jie (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Flourished wind energy market pushes the latest wind turbines (WTs) to further and harsher inland and offshore environment. Increased operation and maintenance cost calls for more reliable and cost effective condition monitoring systems. In this article, a bi-level condition monitoring framework for interturn short-circuit faults (ITSCFs) in WT generators is proposed. A benchmark dataset, consisting of 75 ITSCF scenarios and generator current signals of a specific WT, has been created and made publicly available on Zenodo. The data are simulated at a rate of 4 kHz. Based on the time and frequency features extracted from data processing, machine learning-based severity estimation and faulty phase identification modules can provide valuable diagnostic information for wind farm operators. Specifically, the performance of long short-term memory (LSTM) networks, gated recurrent unit (GRU) networks, and convolutional neural networks (CNNs) are analyzed and compared for severity estimation and faulty phase identification. For test-bed experimental reference, various numbers of scenarios for training the models are analyzed. Numerical experiments demonstrate the computational efficiency and robust denoising capability of the CNN algorithm. The GRU network, however, achieves the highest accuracy. The overall system performance improves significantly, from 87.76% with 16 training scenarios to 99.95% with 52 training scenarios, when tested on a set containing all 76 scenarios from an unforeseen period.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Yan, Jingyi; Senemmar, Soroush; Zhang, Jie (, Journal of Physics: Conference Series)Abstract While preventive maintenance is crucial in wind turbine operation, conventional condition monitoring systems face limitations in terms of cost and complexity when compared to innovative signal processing techniques and artificial intelligence. In this paper, a cascading deep learning framework is proposed for the monitoring of generator winding conditions, specifically to promptly detect and identify inter-turn short circuit faults and estimate their severity in real time. This framework encompasses the processing of high-resolution current signal samples, coupled with the extraction of current signal features in both time and frequency domains, achieved through discrete wavelet transform. By leveraging long short-term memory recurrent neural networks, our aim is to establish a cost-efficient and reliable condition monitoring system for wind turbine generators. Numeral experiments show an over 97% accuracy for fault diagnosis and severity estimation. More specifically, with the intrinsic feature provided by wavelet transform, the faults can be 100% identified by the diagnosis model.more » « less
An official website of the United States government
