skip to main content

Search for: All records

Creators/Authors contains: "Seo, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper focuses on a core task in computational sustainability and statistical ecology: species distribution modeling (SDM). In SDM, the occurrence pattern of a species on a landscape is predicted by environmental features based on observations at a set of locations. At first, SDM may appear to be a binary classification problem, and one might be inclined to employ classic tools (e.g., logistic regression, support vector machines, neural networks) to tackle it. However, wildlife surveys introduce structured noise (especially under-counting) in the species observations. If unaccounted for, these observation errors systematically bias SDMs. To address the unique challenges of SDM,more »this paper proposes a framework called StatEcoNet. Specifically, this work employs a graphical generative model in statistical ecology to serve as the skeleton of the proposed computational framework and carefully integrates neural networks under the framework. The advantages of StatEcoNet over related approaches are demonstrated on simulated datasets as well as bird species data. Since SDMs are critical tools for ecological science and natural resource management, StatEcoNet may offer boosted computational and analytical powers to a wide range of applications that have significant social impacts, e.g., the study and conservation of threatened species.« less
  2. Free, publicly-accessible full text available December 1, 2022
  3. Free, publicly-accessible full text available May 1, 2023
  4. Free, publicly-accessible full text available April 1, 2023
  5. Abstract We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds nomore »evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate.« less
    Free, publicly-accessible full text available April 1, 2023
  6. Free, publicly-accessible full text available March 1, 2023
  7. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidencemore »of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 .« less
    Free, publicly-accessible full text available March 1, 2023