- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, Dominic (2)
-
Dickinson, Hugh (2)
-
Fortson, Lucy (2)
-
Kruk, Sandor (2)
-
Mehta, Vihang (2)
-
Serjeant, Stephen (2)
-
Walmsley, Mike (2)
-
Dawson, James_M (1)
-
Krawczyk, Coleman (1)
-
Lintott, Chris (1)
-
Mantha, Kameswara (1)
-
Mantha, Kameswara Bharadwaj (1)
-
Popp, Jürgen_J (1)
-
Scarlata, Claudia (1)
-
Simmons, Brooke (1)
-
Simmons, Brooke D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Giant star-forming clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z ≳ 1) galaxies but their formation and role in galaxy evolution remain unclear. Observations of low-redshift clumpy galaxy analogues are rare but the availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples much more feasible. Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs), have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localizing specific objects or features in astrophysical imaging data. In this paper, we demonstrate the use of DL-based object detection models to localize GSFCs in astrophysical imaging data. We apply the Faster Region-based Convolutional Neural Network object detection framework (FRCNN) to identify GSFCs in low-redshift (z ≲ 0.3) galaxies. Unlike other studies, we train different FRCNN models on observational data that was collected by the Sloan Digital Sky Survey and labelled by volunteers from the citizen science project ‘Galaxy Zoo: Clump Scout’. The FRCNN model relies on a CNN component as a ‘backbone’ feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN – ‘Zoobot’ – with a generic classification backbone and find that Zoobot achieves higher detection performance. Our final model is capable of producing GSFC detections with a completeness and purity of ≥0.8 while only being trained on ∼5000 galaxy images.more » « less
-
Dickinson, Hugh; Adams, Dominic; Mehta, Vihang; Scarlata, Claudia; Fortson, Lucy; Serjeant, Stephen; Krawczyk, Coleman; Kruk, Sandor; Lintott, Chris; Mantha, Kameswara Bharadwaj; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Galaxy Zoo: Clump Scout is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a data set containing 3561 454 two-dimensional points, which constitute 1739 259 annotations of 85 286 distinct subjects provided by 20 999 volunteers. Using this data set, we identify 128 100 potential clumps distributed among 44 126 galaxies. This data set can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregatormore » « less
An official website of the United States government
