Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and −1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay–Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration.more » « less
-
Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines’ curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals.
-
Abstract Liquid crystals offer a dynamic platform for developing advanced photonics and soft actuation systems due to their unique and facile tunability and reconfigurability. Achieving precise spatial patterning of the liquid crystal alignment is critical to developing electro‐optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, a simple method is demonstrated to achieve continuous 3D control of the directions of liquid crystal mesogens using a two‐step photo‐exposure process. In the first step, polarized light sets the orientation in the plane of confining substrates; the second step uses unpolarized light of a prescribed dose to set the out‐of‐plane orientation. The method enables smoothly varying orientational patterns with sub‐micrometer precision. As a demonstration, the setup is used to create gradient‐index lenses with parabolic refractive index profiles that remain stable without external electric fields. The lenses' focal length and sensitivity to light polarization are characterized through experimental and numerical methods. The findings pave the way for developing next‐generation photonic devices and actuated materials, with potential applications in molecular self‐assembly, re‐configurable optics, and responsive matter.
-
Abstract The search for new strategies for large‐scale, self‐assembled arrays of soft objects is key for many applications in photonics and bottom‐up manufacturing. This work shows how liquid crystal topological defects can be assembled in controlled, aperiodic arrays. In particular, the focus is on two typical examples: quasicrystals and moiré patterns. Thanks to a combination of topographical cues, specifically a micropillar array and electrical switching, defects can be assembled in a quasicrystal structure, as seen from polarized optical microscopy and from diffraction patterns. In this setting, the liquid crystal defects assemble in multiple patterns that can be switched by tuning the applied electric field and retain the quasicrystalline symmetry. Using topographic cues, it is also possible to induce moiré patterns of defects, characterized by a long wavelength superimposed on the periodic structures over a short scale. Even when the defect density increases and the short‐scale periodicity is lost, the long‐scale one remains. This work shows how versatile the combination of topographic confinement and electro‐optic effect is, giving access to patterns that are otherwise difficult to realize.