skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Severson, Sarah M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 8, 2026
  2. The ring-opening copolymerization (ROCOP) of epoxides with CO2 or cyclic anhydrides is a versatile route toward synthesizing a wide range of polycarbonate and polyester copolymers. ROCOP most commonly uses binary catalyst systems comprising separate Lewis acid and nucleophilic cocatalyst components. However, the dependence on two discrete catalyst components leads to low activities at low loadings, and binary catalyst systems are prone to numerous side reactions. It was therefore proposed that covalently tethering the Lewis acid catalyst and cocatalyst together would increase both catalyst activity and selectivity in epoxide ROCOP. Since these initial efforts, many multifunctional catalysts featuring covalently tethered cationic or Lewis base cocatalyst(s) have been developed for epoxide ROCOP. This review examines multifunctional catalysts that have been developed for copolymerization of epoxides with CO2, cyclic anhydrides, carbonyl sulfide (COS), and cyclic thioanhydrides. In particular, we will assess how multifunctional catalysts’ mechanisms of operations lead to improved activity and selectivity in ROCOP. 
    more » « less