skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sevetson J, Fittro S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent results have demonstrated modification of electrical synapse strength by varied forms of neuronal activity. However, the mechanisms underlying plasticity induction in central mammalian neurons are unclear. Here we show that the two established inductors of plasticity at electrical synapses in the thalamic reticular nucleus -- paired burst spiking in coupled neurons, and mGluR-dependent tetanization of synaptic input -- are separate pathways that converge at a common downstream endpoint. Using occlusion experiments and pharmacology in patched pairs of coupled neurons in vitro, we show that burst-induced depression depends on calcium entry via voltage-gated channels, is blocked by BAPTA chelation, and recruits intracellular calcium release on its way to activation of phosphatase activity. In contrast, mGluR-dependent plasticity is independent of calcium entry or calcium dynamics. Together, these results show that the spiking-initiated mechanisms underlying electrical synapse plasticity are similar to those that induce plasticity at chemical synapses, and offer the possibility that calcium-regulated mechanisms may also lead to alternate outcomes, such as potentiation. Because these mechanistic elements are widely found in mature neurons, we expect them to apply broadly to electrical synapses across the brain, acting as the crucial link between neuronal activity and electrical synapse strength. 
    more » « less