skip to main content

Search for: All records

Creators/Authors contains: "Sevilla, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Planet engulfment can be inferred from enhancement of refractory elements in the photosphere of the engulfing star following accretion of rocky planetary material. Such refractory enrichments are subject to stellar interior mixing processes, namely thermohaline mixing induced by an inverse mean-molecular-weight gradient between the convective envelope and radiative core. Using mesa stellar models, we quantified the strength and duration of engulfment signatures following planet engulfment. We found that thermohaline mixing dominates during the first ∼5–45 Myr post-engulfment, weakening signatures by a factor of ∼2 before giving way to depletion via gravitational settling on longer time-scales. Solar metallicity stars in the 0.5–1.2 M⊙ mass range have observable signature time-scales of ∼1 Myr–8 Gyr, depending on the engulfing star mass and amount of material engulfed. Early type stars exhibit larger initial refractory enhancements but more rapid depletion. Solar-like stars (M = 0.9–1.1 M⊙) maintain observable signatures (>0.05 dex) over time-scales of ∼20 Myr–1.7 Gyr for nominal 10 M⊕ engulfment events, with longer-lived signatures occurring for low-metallicity and/or hotter stars (1 M⊙, ∼2–3 Gyr). Engulfment events occurring well after the zero-age main sequence produce larger signals due to suppression of thermohaline mixing by gravitational settling of helium (1 M⊙, ∼1.5 Gyr). These results indicate that it may be difficult to observe engulfment signatures in solar-like starsmore »that are several Gyr old.

    « less

    Planetary engulfment events can occur while host stars are on the main sequence. The addition of rocky planetary material during engulfment will lead to refractory abundance enhancements in the host star photosphere, but the level of enrichment and its duration will depend on mixing processes that occur within the stellar interior, such as convection, diffusion, and thermohaline mixing. We examine engulfment signatures by modelling the evolution of photospheric lithium abundances. Because lithium can be burned before or after the engulfment event, it produces unique signatures that vary with time and host star type. Using mesa stellar models, we quantify the strength and duration of these signatures following the engulfment of a 1, 10, or 100 M⊕ planetary companion with bulk Earth composition, for solar-metallicity host stars with masses ranging from 0.5 to 1.4 M⊙. We find that lithium is quickly depleted via burning in low-mass host stars ($\lesssim 0.7 \, {\rm M}_\odot$) on a time-scale of a few hundred Myrs, but significant lithium enrichment signatures can last for Gyrs in G-type stars ($\sim \! 0.9 \, {\rm M}_{\odot }$). For more massive stars (1.3−1.4 M⊙), engulfment can enhance internal mixing and diffusion processes, potentially decreasing the surface lithium abundance. Our predicted signatures frommore »exoplanet engulfment are consistent with observed lithium-rich solar-type stars and abundance enhancements in chemically inhomogeneous binary stars.

    « less