A planar Josephson junction is a versatile platform to realize topological superconductivity over a large parameter space and host Majorana bound states. With a change in the Zeeman field, this system undergoes a transition from trivial to topological superconductivity accompanied by a jump in the superconducting phase difference between the two superconductors. A standard model of these Josephson junctions, which can be fabricated to have a nearly perfect interfacial transparency, predicts a simple universal behavior. In that model, at the same value of Zeeman field for the topological transition, there is a π phase jump and a minimum in the critical superconducting current, while applying a controllable phase difference yields a diamond-shaped topological region as a function of that phase difference and a Zeeman field. In contrast, even for a perfect interfacial transparency, we find a much richer and nonuniversal behavior as the width of the superconductor is varied or the Dresselhaus spin–orbit coupling is considered. The Zeeman field for the phase jump, not necessarily π, is different from the value for the minimum critical current, while there is a strong deviation from the diamond-like topological region. These Josephson junctions show a striking example of a nonreciprocal transport and superconducting diode effect, revealing the importance of our findings not only for topological superconductivity and fault-tolerant quantum computing but also for superconducting spintronics.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 17, 2025
-
Developing alternative material platforms for use in superconductor–semiconductor hybrid structures is desirable due to limitations caused by intrinsic microwave losses present in commonly used III/V material systems. With the recent reports on tantalum superconducting qubits that show improvements over the Nb and Al counterparts, exploring Ta the superconductor in hybrid material systems is promising. Here, we study the growth of Ta on semiconducting Ge (001) substrates grown via molecular beam epitaxy. We show that at a growth temperature of 400 °C, the Ta diffuses into the Ge matrix in a self-limiting nature resulting in smooth and abrupt surfaces and interfaces with roughness on the order of 3–7 Å as measured by atomic force microscopy and x-ray reflectivity. The films are found to be a mixture of Ta5Ge3 and TaGe2 binary alloys and form a native oxide that seems to form a sharp interface with the underlying film. These films are superconducting with a TC∼1.8−2 K and HC⊥∼1.88 T, HC∥∼5.1 T. These results show this tantalum germanide film to be promising for future superconducting quantum information platforms.
Free, publicly-accessible full text available February 26, 2025 -
Free, publicly-accessible full text available April 1, 2025
-
We describe the generation of entangling gates on superconductor-semiconductor hybrid qubits by ac voltage modulation of the Josephson energy. Our numerical simulations demonstrate that the unitary error can be below 10−5 in a variety of 75-ns-long two-qubit gates (CZ, 𝑖SWAP, and √𝑖SWAP) implemented using parametric resonance. We analyze the conditional 𝑍𝑍 phase and demonstrate that the CZ gate needs no further phase-correction steps, while the 𝑍𝑍 phase error in swap-type gates can be compensated by choosing pulse parameters. With decoherence considered, we estimate that qubit relaxation time needs to exceed 70μs to achieve the 99.9% fidelity threshold.more » « less
-
Abstract Adoption of fast, parametric coupling elements has improved the performance of superconducting qubits, enabling recent demonstrations of quantum advantage in randomized sampling problems. The development of low loss, high contrast couplers is critical for scaling up these systems. We present a blueprint for a gate-tunable coupler realized with a two-dimensional electron gas in an InAs/InGaAs heterostructure. Rigorous numerical simulations of the semiconductor and high frequency electromagnetic behavior of the coupler and microwave circuitry yield an on/off ratio of more than one order of magnitude. We give an estimate of the dielectric-limited loss from the inclusion of the coupler in a two qubit system, with coupler coherences ranging from a few to tens of microseconds.