skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shaden Smith, Kejun Huang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sparse tensor factorization is a popular tool in multi-way data analysis and is used in applications such as cybersecurity, recommender systems, and social network analysis. In many of these applications, the tensor is not known a priori and instead arrives in a streaming fashion for a potentially unbounded amount of time. Existing approaches for streaming sparse tensors are not practical for unbounded streaming because they rely on maintaining the full factorization of the data, which grows linearly with time. In this work, we present CP-stream, an algorithm for streaming factorization in the model of the canonical polyadic decomposition which does not grow linearly in time or space, and is thus practical for long-term streaming. Additionally, CP-stream incorporates user-specified constraints such as non-negativity which aid in the stability and interpretability of the factorization. An evaluation of CP-stream demonstrates that it converges faster than state-of-the-art streaming algorithms while achieving lower reconstruction error by an order of magnitude. We also evaluate it on real-world sparse datasets and demonstrate its usability in both network traffic analysis and discussion tracking. Our evaluation uses exclusively public datasets and our source code is released to the public as part of SPLATT, an open source high-performance tensor factorization toolkit. 
    more » « less