Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
New sources of parity and time-reversal violation are predicted by well motivated extensions of the Standard Model and can be effectively probed by precision spectroscopy of atoms and molecules. Chiral molecules have distinguished enantiomers which are related by parity transformation. Thus they are promising candidates to search for parity violation at molecular scales, which has yet to be observed. In this work, we show that precision spectroscopy of the hyperfine structure of chiral molecules is sensitive to new physics sources of parity and time-reversal violation. In particular, such a study can be sensitive to regions unexplored by terrestrial experiments of a new chiral spin-1 particle that couples to nucleons. We explore the potential to hunt for time-reversal violation in chiral molecules and show that it can be a complementary measurement to other probes. We assess the feasibility of such hyperfine metrology and project the sensitivity in . Published by the American Physical Society2024more » « less
-
The imbalance of matter and antimatter in our Universe provides compelling motivation to search for undiscovered particles that violate charge-parity symmetry. Interactions with vacuum fluctuations of the fields associated with these new particles will induce an electric dipole moment of the electron (eEDM). We present the most precise measurement yet of the eEDM using electrons confined inside molecular ions, subjected to a huge intramolecular electric field, and evolving coherently for up to 3 seconds. Our result is consistent with zero and improves on the previous best upper bound by a factor of ~2.4. Our results provide constraints on broad classes of new physics above electron volts, beyond the direct reach of the current particle colliders or those likely to be available in the coming decades.more » « less
-
A high-intensity supersonic beam source has been a key component in studies of molecular collisions, molecule–surface interaction, chemical reactions, and precision spectroscopy. However, the molecular density available for experiments in a downstream science chamber is limited by skimmer clogging, which constrains the separation between a valve and a skimmer to at least several hundred nozzle diameters. A recent experiment ( Sci. Adv. , 2017, 3 , e1602258) has introduced a new strategy to address this challenge: when a skimmer is cooled to a temperature below the freezing point of the carrier gas, skimmer clogging can be effectively suppressed. We go beyond this proof-of-principle work in several key ways. Firstly, we apply the skimmer cooling approach to discharge-produced radical and metastable beams entrained in a carrier gas. We also identify two different processes for skimmer clogging mitigation—shockwave suppression at temperatures around the carrier gas freezing point and diffusive clogging at even lower temperatures. With the carrier clogging removed, we now fully optimize the production of entrained species such as hydroxyl radicals, resulting in a gain of 30 in density over the best commercial devices. The gain arises from both clogging mitigation and favorable geometry with a much shorter valve–skimmer distance.more » « less
An official website of the United States government
