skip to main content

Search for: All records

Creators/Authors contains: "Shah, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the question of learning the natural parameters of a k parameter \textit{minimal} exponential family from i.i.d. samples in a computationally and statistically efficient manner. We focus on the setting where the support as well as the natural parameters are appropriately bounded. While the traditional maximum likelihood estimator for this class of exponential family is consistent, asymptotically normal, and asymptotically efficient, evaluating it is computationally hard. In this work, we propose a computationally efficient estimator that is consistent as well as asymptotically normal under mild conditions. We provide finite sample guarantees to achieve an l2 error of α in the parameter estimation with sample complexity O(poly(k/α)) and computational complexity O(poly(k/α)). To establish these results, we show that, at the population level, our method can be viewed as the maximum likelihood estimation of a re-parameterized distribution belonging to the same class of exponential family.
  2. We consider learning a sparse pairwise Markov Random Field (MRF) with continuous valued variables from i.i.d samples. We adapt the algorithm of Vuffray et al. (2019) to this setting and provide finite- sample analysis revealing sample complexity scaling logarithmically with the number of variables, as in the discrete and Gaussian settings. Our approach is applicable to a large class of pairwise MRFs with continuous variables and also has desirable asymptotic properties, including consistency and normality under mild conditions. Further, we establish that the population version of the optimization criterion employed by Vuffray et al. (2019) can be interpreted as local maximum likelihood estimation (MLE). As part of our analysis, we introduce a robust variation of sparse linear regression à la Lasso, which may be of interest in its own right.
  3. Heart failure (HF) is a major cause of morbidity and mortality, and one of the leading causes of hospitalization. Early detection of HF symptoms and pro-active management may reduce adverse events. Passive accelerometer data from smartphones may reflect behavioral and physiologic changes due to HF and thus could enable prediction of HF decompensation.
  4. Free, publicly-accessible full text available December 1, 2023
  5. Free, publicly-accessible full text available November 1, 2023
  6. Free, publicly-accessible full text available September 1, 2023