skip to main content


Search for: All records

Creators/Authors contains: "Shah, Jimil M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Over the last decade, several hyper-scale data center companies such as Google, Facebook, and Microsoft have demonstrated the cost-saving capabilities of airside economization with direct/indirect heat exchangers by moving to chiller-less air-cooled data centers. Under pressure from data center owners, information technology equipment OEMs like Dell and IBM are developing information technology equipment that can withstand peak excursion temperature ratings of up to 45 °C, clearly outside the recommended envelope, and into ASHRAEs A4 allowable envelope. As popular and widespread as these cooling technologies are becoming, airside economization comes with its challenges. There is a risk of premature hardware failures or reliability degradation posed by uncontrolled fine particulate and gaseous contaminants in presence of temperature and humidity transients. This paper presents an in-depth review of the particulate and gaseous contamination-related challenges faced by the modern-day data center facilities that use airside economization. This review summarizes specific experimental and computational studies to characterize the airborne contaminants and associated failure modes and mechanisms. In addition, standard lab-based and in-situ test methods for measuring the corrosive effects of the particles and the corrosive gases, as the means of testing the robustness of the equipment against these contaminants, under different temperature and relative humidity conditions are also reviewed. It also outlines the cost-sensitive mitigation techniques like improved filtration strategies and methods that can be utilized for efficient implementation of airside economization. 
    more » « less
  2. Abstract Continuous rise in cloud computing and other web-based services propelled the data center proliferation seen over the past decade. Traditional data centers use vapor-compression-based cooling units that not only reduce energy efficiency but also increase operational and initial investment costs due to involved redundancies. Free air cooling and airside economization can substantially reduce the information technology equipment (ITE) cooling power consumption, which accounts for approximately 40% of energy consumption for a typical air-cooled data center. However, this cooling approach entails an inherent risk of exposing the ITE to harmful ultrafine particulate contaminants, thus, potentially reducing the equipment and component reliability. The present investigation attempts to quantify the effects of particulate contamination inside the data center equipment and ITE room using computational fluid dynamics (CFD). An analysis of the boundary conditions to be used was done by detailed modeling of ITE and the data center white space. Both two-dimensional and three-dimensional simulations were done for detailed analysis of particle transport within the server enclosure. An analysis of the effect of the primary pressure loss obstructions like heat sinks and dual inline memory modules inside the server was done to visualize the localized particle concentrations within the server. A room-level simulation was then conducted to identify the most vulnerable locations of particle concentration within the data center space. The results show that parameters such as higher velocities, heat sink cutouts, and higher aspect ratio features within the server tend to increase the particle concentration inside the servers. 
    more » « less
  3. Abstract The adoption of Single-phase Liquid Immersion Cooling (Sp-LIC) for Information Technology equipment provides an excellent cooling platform coupled with significant energy savings. There are, however, very limited studies related to the reliability of such cooling technology. The Accelerated Thermal Cycling (ATC) test given ATC JEDEC is relevant just for air cooling but there is no such standard for immersion cooling. The ASTM benchmark D3455 with some appropriate adjustments was adopted to test the material compatibility because of the air and dielectric fluid differences in the heat capacitance property and corresponding ramp rate during thermal cycling. For this study, accelerated thermal degradation of the printed circuit board (PCB), passive components, and fiber optic cables submerged in air, white mineral oil, and synthetic fluid at a hoisted temperature of 45C and 35% humidity is undertaken. This paper serves multiple purposes including designing experiments, testing and evaluating material compatibility of PCB, passive components, and optical fibers in different hydrocarbon oils for single-phase immersion cooling. Samples of different materials were immersed in different hydrocarbon oils and air and kept in an environmental chamber at 45C for a total of 288 hours. Samples were then evaluated for their mechanical and electrical properties using Dynamic Mechanical Analyzer (DMA) and a multimeter, respectively. The cross-sections of some samples were also investigated for their structural integrity using SEM. The literature gathered on the subject and quantifiable data gathered by the authors provide the primary basis for this research document. 
    more » « less
  4. null (Ed.)
    Abstract A remarkable amount of energy in data centers is consumed in eliminating the heat generated by the information technology (IT) equipment to maintain and ensure safe operating conditions and optimum performance. The installation of airside economizers (ASEs), while very energy efficient, bears the risk of particulate contamination in data centers, hence, deteriorating the reliability of IT equipment. When relative humidity (RH) in data centers exceeds the deliquescent relative humidity (DRH) of salts or accumulated particulate matter, it absorbs moisture, becomes wet, and subsequently leads to electrical short-circuiting because of degraded surface insulation resistance (SIR) between the closely spaced features on printed circuit boards (PCBs). Another concern with this type of failure is the absence of evidence that hinders the process of evaluation and rectification. Therefore, it is imperative to develop a practical test method to determine the DRH value of the accumulated particulate matter found on PCBs. This research is a first attempt to develop an experimental technique to measure the DRH of dust particles by logging the leakage current versus RH% for the particulate matter dispensed on an interdigitated comb coupon. To validate this methodology, the DRH of pure salts like MgCl2, NH4NO3, and NaCl is determined, and their results are then compared with their published values. This methodology was therefore implemented to help lay a modus operandi of establishing the limiting value or an effective relative humidity envelope to be maintained at a real-world data center facility situated in Dallas industrial area for its continuous and reliable operation. 
    more » « less
  5. Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent. 
    more » « less
  6. Abstract The next radical change in the thermal management of data centers is to shift from conventional cooling methods like air-cooling to direct liquid cooling to enable high thermal mass and corresponding superior cooling. There has been in the past few years a limited adoption of direct liquid cooling in data centers because of its simplicity and high heat dissipation capacity. Single-phase engineered fluid immersion cooling has several other benefits like better server performance, even temperature profile, and higher rack densities and the ability to cool all components in a server without the need for electrical isolation. The reliability aspect of such cooling technology has not been well addressed in the open literature. This paper presents the performance of a fully single-phase dielectric fluid immersed server over wide temperature ranges in an environmental chamber. The server was placed in an environmental chamber and applied extreme temperatures ranging from −20 °C to 10 °C at 100% relative humidity and from 20 to 55 °C at constant 50% relative humidity for extended durations. This work is a first attempt of measuring the performance of a server and other components like pump including flow rate drop, starting trouble, and other potential issues under extreme climatic conditions for a completely liquid-submerged system. Pumping power consumption is directly proportional to the operating cost of a data center. The experiment was carried out until the core temperature reached the maximum junction temperature. This experiment helps to determine the threshold capacity and the robustness of the server for its applications in extreme climatic conditions. 
    more » « less
  7. Contamination due to the use of airside economizer has become a major issue that cost companies revenue. This issue will continue to rise as server components become smaller, densely packed, and as companies move into more polluted environments. Contaminants with small particles less than 10 μm are not noticeable; yet, these particles are most likely to get to areas where they can cause damage. Dust from different sources and suspended in air settles on surfaces of electrical components. The dust mainly contains two components: salts and metallic particles. The salts may be neutral or corrosive and the nature of the salt depends on the deliquescent humidity. For metallic particles, surveys are performed in various data centers in order to determine the limits in terms of weight per unit area and particle size distribution. It is necessary to first identify those contaminants that directly affect the information technology (IT) equipment in the data center. In this research, a real-world data center utilizing airside economization in an ANSI/ISA classified G2 environment was chosen for the study. Servers were removed and qualitative study of cumulative corrosion damage was carried out. The particulate contaminants were collected from different locations of a server and material characterization was performed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). The analysis from these results helps to explain the impact of the contaminants on IT equipment reliability. 
    more » « less