skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Jindal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metal porphyrins act as the reactive center of the ubiquitous monooxygenase, cytochrome P-450. As such, both their native and functionalized forms have been successfully utilized in studying biodegradation of a... 
    more » « less
  2. Recurrent respiratory papillomatosis (RRP) is a chronic condition primarily affecting children, known as juvenile onset RRP (JORRP), caused by a viral infection. Antiviral medications have been used to reduce the need for frequent surgeries, slow the growth of papillomata, and prevent disease spread. Effective treatment of JORRP necessitates targeted drug delivery (TDD) to ensure that inhaled aerosolized drugs reach specific sites, such as the larynx and glottis, without harming healthy tissues. Using computational fluid particle dynamics (CFPD) and machine learning (ML), this study (1) investigated how drug properties and individual factors influence TDD efficiency for JORRP treatment and (2) developed personalized inhalation therapy using an ML-empowered smart inhaler control algorithm for precise medication release. This algorithm optimizes the inhaler nozzle position and diameter based on drug and patient-specific data, enhancing drug delivery to the larynx and glottis. CFPD simulations show that particle size significantly affects deposition fractions in the upper airway, emphasizing the importance of particle size selection. Additionally, optimal nozzle diameter and delivery efficiency depend on particle size, inhalation flow rate, and release time. The ML-based TDD strategy, employing a classification and regression tree model, outperforms conventional inhalation therapy by achieving a higher delivery efficiency to the larynx and glottis. This innovative concept of an ML-empowered smart inhaler represents a promising step toward personalized and precise pulmonary healthcare through inhalation therapy. It demonstrates the potential of AI-driven smart inhalers for improving the treatment outcomes of lung diseases that require TDD at designated lung sites. 
    more » « less
  3. Ionic liquids are currently being considered as potential electrolyte candidates for next-generation batteries and energy storage devices due to their high thermal and chemical stability. However, high viscosity and low conductivity at lower temperatures have severely hampered their commercial applications. To overcome these challenges, it is necessary to develop structure–property models for ionic liquid transport properties to guide the ionic liquid design. This work expands our previous effort in developing a machine learning model on imidazolium-based ionic liquids to now include ten different cation families, representing structural and chemical diversity. The model dataset contains 2869 ionic conductivity values over a temperature range of 238–472 K collected from the NIST ILThermo database and literature values for 397 unique ionic liquids. The database covers 214 unique cations and 68 unique anions. Three machine learning models, namely multiple linear regression, random forest, and extreme gradient boosting are applied to correlate the ionic liquid conductivity data with cation and anion features. Shapely additive analysis is performed to glean insights into cation and anion features with significant impact on ionic conductivity. Finally, the extreme gradient boosting model is used to predict the ionic conductivity of ionic liquids from all the possible combinations of unique cations and anions to identify ionic liquids crossing the ionic conductivity threshold of 2.0 S m −1 . 
    more » « less